We consider the Cauchy problem for two prototypes of flux-saturated diffusion equations. In arbitrary space dimension, we give an optimal condition on the growth of the initial datum which discriminates between occurrence or nonoccurrence of a waiting time phenomenon. We also prove optimal upper bounds on the waiting time. Our argument is based on the introduction of suitable families of subsolutions and on a comparison result for a general class of flux-saturated diffusion equations.

Optimal waiting time bounds for some flux-saturated diffusion equations / Giacomelli, Lorenzo; Moll, Salvador; Petitta, Francesco. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - STAMPA. - 42:4(2017), pp. 556-578. [10.1080/03605302.2017.1294179]

Optimal waiting time bounds for some flux-saturated diffusion equations

GIACOMELLI, Lorenzo;PETITTA, FRANCESCO
2017

Abstract

We consider the Cauchy problem for two prototypes of flux-saturated diffusion equations. In arbitrary space dimension, we give an optimal condition on the growth of the initial datum which discriminates between occurrence or nonoccurrence of a waiting time phenomenon. We also prove optimal upper bounds on the waiting time. Our argument is based on the introduction of suitable families of subsolutions and on a comparison result for a general class of flux-saturated diffusion equations.
2017
Comparison principle; conservation laws; entropy solutions; flux-saturated diffusion equations; waiting time phenomena; Analysis; Applied Mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Optimal waiting time bounds for some flux-saturated diffusion equations / Giacomelli, Lorenzo; Moll, Salvador; Petitta, Francesco. - In: COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS. - ISSN 0360-5302. - STAMPA. - 42:4(2017), pp. 556-578. [10.1080/03605302.2017.1294179]
File allegati a questo prodotto
File Dimensione Formato  
Giacomelli_Optimal_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 578.53 kB
Formato Adobe PDF
578.53 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/951989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact