We consider target-space homogenization for energies defined on partitions parametrized by a discrete lattice B ⊂ RN. For a smallσ > 0, the variable is a piecewise constant function taking values in σB, and the energy depends on the jumps and their orientation. In the limit as σ → 0 we obtain a homogenized functional defined on functions of bounded variation. This result is relevant in the study of dislocation structures in plastically deformed crystals. We review recent literature on the topic and propose our limiting effective energy as a continuum model for strain-gradient plasticity.

Homogenization of vector-valued partition problems and dislocation cell structures in the plane / Conti, Sergio; Garroni, Adriana; Müller, Stefan. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - STAMPA. - 10:1(2017), pp. 3-17. [10.1007/s40574-016-0083-z]

Homogenization of vector-valued partition problems and dislocation cell structures in the plane

GARRONI, Adriana;
2017

Abstract

We consider target-space homogenization for energies defined on partitions parametrized by a discrete lattice B ⊂ RN. For a smallσ > 0, the variable is a piecewise constant function taking values in σB, and the energy depends on the jumps and their orientation. In the limit as σ → 0 we obtain a homogenized functional defined on functions of bounded variation. This result is relevant in the study of dislocation structures in plastically deformed crystals. We review recent literature on the topic and propose our limiting effective energy as a continuum model for strain-gradient plasticity.
2017
Mathematics (all)
01 Pubblicazione su rivista::01a Articolo in rivista
Homogenization of vector-valued partition problems and dislocation cell structures in the plane / Conti, Sergio; Garroni, Adriana; Müller, Stefan. - In: BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA. - ISSN 1972-6724. - STAMPA. - 10:1(2017), pp. 3-17. [10.1007/s40574-016-0083-z]
File allegati a questo prodotto
File Dimensione Formato  
Conti_Homogenization-of-vector_2017.pdf

solo gestori archivio

Note: articolo principale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 527.87 kB
Formato Adobe PDF
527.87 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/951812
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact