We consider the Cauchy problem for a nonlinear Dirac equation on $\mathbb{R}^{n}$, $n\ge1$, with a power type, \emph{non} gauge invariant nonlinearity $\sim|u|^{p}$. We prove several ill-posedness and blowup results for both large and small $H^{s}$ data. In particular we prove that: for (essentially arbitrary) large data in $H^{\frac n2+}(\R ^n)$ the solution blows up in a finite time; for suitable large $H^{s}(\R ^n)$ data and $s< \frac{n}{2}-\frac{1}{p-1}$ no weak solution exist; when $1<p<1+\frac1n$ (or $1<p<1+\frac2n$ in $n=1,2,3$), there exist arbitrarily small initial data data for which the solution blows up in a finite time.
Blowup and ill-posedness results for a dirac equation without gauge invariance / D'Ancona, Piero Antonio; Okamoto, Mamoru. - In: EVOLUTION EQUATIONS AND CONTROL THEORY. - ISSN 2163-2480. - STAMPA. - 5:2(2016), pp. 225-234. [10.3934/eect.2016002]
Blowup and ill-posedness results for a dirac equation without gauge invariance
D'ANCONA, Piero Antonio;
2016
Abstract
We consider the Cauchy problem for a nonlinear Dirac equation on $\mathbb{R}^{n}$, $n\ge1$, with a power type, \emph{non} gauge invariant nonlinearity $\sim|u|^{p}$. We prove several ill-posedness and blowup results for both large and small $H^{s}$ data. In particular we prove that: for (essentially arbitrary) large data in $H^{\frac n2+}(\R ^n)$ the solution blows up in a finite time; for suitable large $H^{s}(\R ^n)$ data and $s< \frac{n}{2}-\frac{1}{p-1}$ no weak solution exist; when $1
File | Dimensione | Formato | |
---|---|---|---|
Dancona_Blowup-and-ill-posedness-results_2016.pdf
solo gestori archivio
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
340.27 kB
Formato
Adobe PDF
|
340.27 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.