We consider the Cauchy problem for a nonlinear Dirac equation on $\mathbb{R}^{n}$, $n\ge1$, with a power type, \emph{non} gauge invariant nonlinearity $\sim|u|^{p}$. We prove several ill-posedness and blowup results for both large and small $H^{s}$ data. In particular we prove that: for (essentially arbitrary) large data in $H^{\frac n2+}(\R ^n)$ the solution blows up in a finite time; for suitable large $H^{s}(\R ^n)$ data and $s< \frac{n}{2}-\frac{1}{p-1}$ no weak solution exist; when $1<p<1+\frac1n$ (or $1<p<1+\frac2n$ in $n=1,2,3$), there exist arbitrarily small initial data data for which the solution blows up in a finite time.

Blowup and ill-posedness results for a dirac equation without gauge invariance / D'Ancona, Piero Antonio; Okamoto, Mamoru. - In: EVOLUTION EQUATIONS AND CONTROL THEORY. - ISSN 2163-2480. - STAMPA. - 5:2(2016), pp. 225-234. [10.3934/eect.2016002]

Blowup and ill-posedness results for a dirac equation without gauge invariance

D'ANCONA, Piero Antonio;
2016

Abstract

We consider the Cauchy problem for a nonlinear Dirac equation on $\mathbb{R}^{n}$, $n\ge1$, with a power type, \emph{non} gauge invariant nonlinearity $\sim|u|^{p}$. We prove several ill-posedness and blowup results for both large and small $H^{s}$ data. In particular we prove that: for (essentially arbitrary) large data in $H^{\frac n2+}(\R ^n)$ the solution blows up in a finite time; for suitable large $H^{s}(\R ^n)$ data and $s< \frac{n}{2}-\frac{1}{p-1}$ no weak solution exist; when $1
2016
blow up; dirac equation; hs-solution; non gauge invariance; nonexistence of solution; modeling and simulation; control and optimization; applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Blowup and ill-posedness results for a dirac equation without gauge invariance / D'Ancona, Piero Antonio; Okamoto, Mamoru. - In: EVOLUTION EQUATIONS AND CONTROL THEORY. - ISSN 2163-2480. - STAMPA. - 5:2(2016), pp. 225-234. [10.3934/eect.2016002]
File allegati a questo prodotto
File Dimensione Formato  
Dancona_Blowup-and-ill-posedness-results_2016.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 340.27 kB
Formato Adobe PDF
340.27 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/951604
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact