An approach to high-performance discrete event simulation consists of exploiting parallelization techniques. These rely on partitioning the simulation model into multiple, interacting simulation objects, also known as Logical Processes (LPs), which concurrently execute events on different CPUs and/or multiple CPU-cores. However, despite the tendency towards high degree of hardware parallelism, for relatively large models, multi-programming schemes are still needed in order to share a single CPU-core across multiple LPs. Consequently, priority management and CPU-scheduling remain central issues for the effectiveness of any parallel simulation environment. This article focuses on the optimistic approach to parallelism, which is based on speculative processing and maintains event-causality across concurrent LPs via rollback techniques. Specifically, the article presents a low-overhead constant-time implementation of the well known Lowest-Timestamp-First algorithm for the identification of the next LP to be CPU-dispatched. This proposal is suited for contexts where the optimistic simulation system conforms to the best-practice of keeping separate event lists for the hosted LPs. The implementation has been integrated in the open source ROOT-Sim (ROme OpTimistic Simulator) package. The effectiveness of the presented proposal is assessed via an extended performance study, carried out by relying on the game of life as the test-bed application. © 2015 Elsevier B.V. All rights reserved.

A low-overhead constant-time Lowest-Timestamp-First CPU scheduler for high-performance optimistic simulation platforms / Quaglia, Francesco. - In: SIMULATION MODELLING PRACTICE AND THEORY. - ISSN 1569-190X. - STAMPA. - 53:(2015), pp. 103-122. [10.1016/j.simpat.2015.01.009]

A low-overhead constant-time Lowest-Timestamp-First CPU scheduler for high-performance optimistic simulation platforms

QUAGLIA, Francesco
2015

Abstract

An approach to high-performance discrete event simulation consists of exploiting parallelization techniques. These rely on partitioning the simulation model into multiple, interacting simulation objects, also known as Logical Processes (LPs), which concurrently execute events on different CPUs and/or multiple CPU-cores. However, despite the tendency towards high degree of hardware parallelism, for relatively large models, multi-programming schemes are still needed in order to share a single CPU-core across multiple LPs. Consequently, priority management and CPU-scheduling remain central issues for the effectiveness of any parallel simulation environment. This article focuses on the optimistic approach to parallelism, which is based on speculative processing and maintains event-causality across concurrent LPs via rollback techniques. Specifically, the article presents a low-overhead constant-time implementation of the well known Lowest-Timestamp-First algorithm for the identification of the next LP to be CPU-dispatched. This proposal is suited for contexts where the optimistic simulation system conforms to the best-practice of keeping separate event lists for the hosted LPs. The implementation has been integrated in the open source ROOT-Sim (ROme OpTimistic Simulator) package. The effectiveness of the presented proposal is assessed via an extended performance study, carried out by relying on the game of life as the test-bed application. © 2015 Elsevier B.V. All rights reserved.
2015
CPU-scheduling; Optimistic synchronization; Parallel discrete event simulation; Performance optimization; Software; Modeling and Simulation; Hardware and Architecture
01 Pubblicazione su rivista::01a Articolo in rivista
A low-overhead constant-time Lowest-Timestamp-First CPU scheduler for high-performance optimistic simulation platforms / Quaglia, Francesco. - In: SIMULATION MODELLING PRACTICE AND THEORY. - ISSN 1569-190X. - STAMPA. - 53:(2015), pp. 103-122. [10.1016/j.simpat.2015.01.009]
File allegati a questo prodotto
File Dimensione Formato  
Quaglia_A-low-overhead_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 893.32 kB
Formato Adobe PDF
893.32 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/951486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact