We present a constrained version of the problem of enumerating all maximal directed acyclic subgraphs (DAG) of a graph G. In this version, we enumerate maximal DAGs whose sources and targets belong to a predefined subset of the nodes. We call such DAGs stories. We first show how to compute one story in polynomial-time, and then describe two different algorithms to "tell" all possible stories. © 2012 Elsevier B.V. All rights reserved.

Telling stories: Enumerating maximal directed acyclic graphs with a constrained set of sources and targets / Acua, Vicente; Birmel, Etienne; Cottret, Ludovic; Crescenzi, Pierluigi; Jourdan, Fabien; Lacroix, Vincent; MARCHETTI SPACCAMELA, Alberto; Marino, Andrea; Milreu, Paulo Vieira; Sagot, Marie France; Stougie, Leen. - In: THEORETICAL COMPUTER SCIENCE. - ISSN 0304-3975. - STAMPA. - 457:(2012), pp. 1-9. [10.1016/j.tcs.2012.07.023]

Telling stories: Enumerating maximal directed acyclic graphs with a constrained set of sources and targets

MARCHETTI SPACCAMELA, Alberto;
2012

Abstract

We present a constrained version of the problem of enumerating all maximal directed acyclic subgraphs (DAG) of a graph G. In this version, we enumerate maximal DAGs whose sources and targets belong to a predefined subset of the nodes. We call such DAGs stories. We first show how to compute one story in polynomial-time, and then describe two different algorithms to "tell" all possible stories. © 2012 Elsevier B.V. All rights reserved.
2012
Feedback arc set; Maximal DAG; Story arc set; Theoretical Computer Science; Computer Science (all)
01 Pubblicazione su rivista::01a Articolo in rivista
Telling stories: Enumerating maximal directed acyclic graphs with a constrained set of sources and targets / Acua, Vicente; Birmel, Etienne; Cottret, Ludovic; Crescenzi, Pierluigi; Jourdan, Fabien; Lacroix, Vincent; MARCHETTI SPACCAMELA, Alberto; Marino, Andrea; Milreu, Paulo Vieira; Sagot, Marie France; Stougie, Leen. - In: THEORETICAL COMPUTER SCIENCE. - ISSN 0304-3975. - STAMPA. - 457:(2012), pp. 1-9. [10.1016/j.tcs.2012.07.023]
File allegati a questo prodotto
File Dimensione Formato  
VE_2012_11573-951164.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 335.05 kB
Formato Adobe PDF
335.05 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/951164
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact