We prove that the only symplectic semifield spreads of PG(5,q^2), q>= 2^14, even, whose associated semifield has center containing F_q, is the Desarguesian spread, by proving that the only F_q-linear set of rank 6 disjoint from the secant variety of the Veronese surface of PG(5,q^2) is a plane with three points of the Veronese surface PG(5,q^6)\PG(5,q^2).
On symplectic semifield spreads of PG(5,q2), q even / Capparelli, Stefano; Pepe, Valentina. - In: JOURNAL OF ALGEBRAIC COMBINATORICS. - ISSN 0925-9899. - ELETTRONICO. - (2017), pp. 1-12. [10.1007/s10801-017-0742-x]
On symplectic semifield spreads of PG(5,q2), q even
CAPPARELLI, Stefano;PEPE, VALENTINA
2017
Abstract
We prove that the only symplectic semifield spreads of PG(5,q^2), q>= 2^14, even, whose associated semifield has center containing F_q, is the Desarguesian spread, by proving that the only F_q-linear set of rank 6 disjoint from the secant variety of the Veronese surface of PG(5,q^2) is a plane with three points of the Veronese surface PG(5,q^6)\PG(5,q^2).File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
art%3A10.1007%2Fs10801-017-0742-x.pdf
solo utenti autorizzati
Note: Articolo principale
Tipologia:
Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
451.81 kB
Formato
Adobe PDF
|
451.81 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.