In this talk, we survey recent results on situation calculus bounded action theories. These are action theories with the constraints that the size of the extension of fluents in every situation must be bounded, though such an extension changes from situation to situation. Such action theories give rise to infinite transition systems that can be faithfully abstracted into finite ones, making verification decidable.

Temporal reasoning in bounded situation calculus / DE GIACOMO, Giuseppe. - STAMPA. - (2015), pp. 2-2. (Intervento presentato al convegno 22nd International Symposium on Temporal Representation and Reasoning, TIME 2015 tenutosi a Kassel; Germany nel 23-25 September 2015) [10.1109/TIME.2015.20].

Temporal reasoning in bounded situation calculus

DE GIACOMO, Giuseppe
2015

Abstract

In this talk, we survey recent results on situation calculus bounded action theories. These are action theories with the constraints that the size of the extension of fluents in every situation must be bounded, though such an extension changes from situation to situation. Such action theories give rise to infinite transition systems that can be faithfully abstracted into finite ones, making verification decidable.
2015
22nd International Symposium on Temporal Representation and Reasoning, TIME 2015
Action theory; Fluents; Infinite transition systems; Situation calculus; Temporal reasoning
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Temporal reasoning in bounded situation calculus / DE GIACOMO, Giuseppe. - STAMPA. - (2015), pp. 2-2. (Intervento presentato al convegno 22nd International Symposium on Temporal Representation and Reasoning, TIME 2015 tenutosi a Kassel; Germany nel 23-25 September 2015) [10.1109/TIME.2015.20].
File allegati a questo prodotto
File Dimensione Formato  
DeGiacomo_Temporal-reasoning_2015.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 90.95 kB
Formato Adobe PDF
90.95 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/950786
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact