This paper focuses on an entropy based formalism to speed up the evaluation of the Structural SIMilarity(SSIM) index in images affected by a global distortion. Looking at images as information sources, avisualdistortion typical setcan be defined for SSIM. This typical set consists of just a subset of information belongingto the original image and the corresponding one in the distorted version. As side effect, some general theoreticalcriteria for the computation of any full reference quality assessment measure can be given in order to maximizeits computational efficiency. Experimental results on various test images show that the proposed approachallows to estimate SSIM with a considerable speed up (about 200 times) and a small relative error (often lowerthan 5%)

An entropy based approach for SSIM speed up / Bruni, Vittoria; Vitulano, D.. - In: SIGNAL PROCESSING. - ISSN 0165-1684. - 135:(2017), pp. 198-209. [10.1016/j.sigpro.2017.01.007]

An entropy based approach for SSIM speed up

BRUNI, VITTORIA;Vitulano, D.
2017

Abstract

This paper focuses on an entropy based formalism to speed up the evaluation of the Structural SIMilarity(SSIM) index in images affected by a global distortion. Looking at images as information sources, avisualdistortion typical setcan be defined for SSIM. This typical set consists of just a subset of information belongingto the original image and the corresponding one in the distorted version. As side effect, some general theoreticalcriteria for the computation of any full reference quality assessment measure can be given in order to maximizeits computational efficiency. Experimental results on various test images show that the proposed approachallows to estimate SSIM with a considerable speed up (about 200 times) and a small relative error (often lowerthan 5%)
2017
Asymptotic equipartition property; Image quality assessment; Information theory; SSIM; Typical set;
01 Pubblicazione su rivista::01a Articolo in rivista
An entropy based approach for SSIM speed up / Bruni, Vittoria; Vitulano, D.. - In: SIGNAL PROCESSING. - ISSN 0165-1684. - 135:(2017), pp. 198-209. [10.1016/j.sigpro.2017.01.007]
File allegati a questo prodotto
File Dimensione Formato  
SSIM_Entropy_cls_rev.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 866.68 kB
Formato Adobe PDF
866.68 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/948686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 13
social impact