In this paper we only discuss algebraic and combinatorial issues related to partition functions. We introduce a space of functions on a lattice which general- izes the space of quasi–polynomials satisfying the difference equations associated to cocircuits of a sequence of vectors X. This space F(X) contains the partition function PX. We prove a ”localization formula” for any f in F(X). In particular, this implies that the partition function PX is a quasi–polynomial on the sets c ? B(X) where c is a big cell and B(X) is the zonotope generated by the vectors in X.
Vector partition function and generalized Dahmen-Micchelli spaces / DE CONCINI, Corrado; Procesi, Claudio; Vergne, M.. - In: TRANSFORMATION GROUPS. - ISSN 1083-4362. - STAMPA. - 15(2010), pp. 751-773. [10.1007/s00031-010-9102-9]
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Vector partition function and generalized Dahmen-Micchelli spaces | |
Autori: | ||
Data di pubblicazione: | 2010 | |
Rivista: | ||
Citazione: | Vector partition function and generalized Dahmen-Micchelli spaces / DE CONCINI, Corrado; Procesi, Claudio; Vergne, M.. - In: TRANSFORMATION GROUPS. - ISSN 1083-4362. - STAMPA. - 15(2010), pp. 751-773. [10.1007/s00031-010-9102-9] | |
Handle: | http://hdl.handle.net/11573/9466 | |
Appartiene alla tipologia: | 01a Articolo in rivista |