We propose a feasible active set method for convex quadratic programming prob- lems with nonnegativity constraints. This method is specifically designed to be embedded into a branch-and-bound algorithm for convex quadratic mixed- integer programming problems. The branch-and-bound algorithm generalizes the approach for unconstrained convex quadratic integer programming proposed by Buchheim, Caprara, and Lodi [ Math. Program., 135 (2012), pp. 369– 395] to the presence of linear constraints. The main feature of the latter approach consists of a sophisticated preprocessing phase, leading to a fast enumeration of the branch-and-bound nodes. Moreover, the feasible active set method takes advantage of this preprocessing phase and is well suited for reoptimization. Experimental results for randomly generated instances show that the new approach significantly outperforms the MIQP solver of CPLEX 12.6 for instances with a small number of constraints.

A feasible active set method with reoptimization for convex quadratic mixed-integer programming / Buchheim, Christoph; DE SANTIS, Marianna; Lucidi, Stefano; Rinaldi, Francesco; Trieu, Long. - In: SIAM JOURNAL ON OPTIMIZATION. - ISSN 1052-6234. - STAMPA. - 26:3(2016), pp. 1695-1714. [10.1137/140978971]

A feasible active set method with reoptimization for convex quadratic mixed-integer programming

DE SANTIS, MARIANNA;LUCIDI, Stefano;
2016

Abstract

We propose a feasible active set method for convex quadratic programming prob- lems with nonnegativity constraints. This method is specifically designed to be embedded into a branch-and-bound algorithm for convex quadratic mixed- integer programming problems. The branch-and-bound algorithm generalizes the approach for unconstrained convex quadratic integer programming proposed by Buchheim, Caprara, and Lodi [ Math. Program., 135 (2012), pp. 369– 395] to the presence of linear constraints. The main feature of the latter approach consists of a sophisticated preprocessing phase, leading to a fast enumeration of the branch-and-bound nodes. Moreover, the feasible active set method takes advantage of this preprocessing phase and is well suited for reoptimization. Experimental results for randomly generated instances show that the new approach significantly outperforms the MIQP solver of CPLEX 12.6 for instances with a small number of constraints.
2016
Global optimization; Integer programming; Quadratic programming; Theoretical Computer Science; Software
01 Pubblicazione su rivista::01a Articolo in rivista
A feasible active set method with reoptimization for convex quadratic mixed-integer programming / Buchheim, Christoph; DE SANTIS, Marianna; Lucidi, Stefano; Rinaldi, Francesco; Trieu, Long. - In: SIAM JOURNAL ON OPTIMIZATION. - ISSN 1052-6234. - STAMPA. - 26:3(2016), pp. 1695-1714. [10.1137/140978971]
File allegati a questo prodotto
File Dimensione Formato  
Buchheim_A-feasible-active_2016.pdf

solo gestori archivio

Note: https://epubs.siam.org/doi/10.1137/140978971
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 390.95 kB
Formato Adobe PDF
390.95 kB Adobe PDF   Contatta l'autore
Buchheim_preprint_A-feasible-active_2016.pdf

accesso aperto

Note: https://doi.org/10.1137/140978971
Tipologia: Documento in Pre-print (manoscritto inviato all'editore, precedente alla peer review)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 305.47 kB
Formato Adobe PDF
305.47 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/945321
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact