The fast growing use of nanoparticles (NPs) in biotechnology and biomedicine raises concerns about human health and the environment. When introduced in physiological milieus, NPs adsorb biomolecules (especially proteins) forming the so-called protein corona (PC). As it is the PC that mostly interacts with biological systems, it represents a major element of the NPs’ biological identity with impact on nanotoxicology, nanosafety and targeted delivery of nanomedicines. To date, NP-protein interactions have been largely investigated in vitro, but this condition is far from mimicking the dynamic nature of physiological environments. Here we investigate the effect of shear stress on PC by exposing lipid NPs with different surface chemistry (either unmodified and PEGylated) to circulating fetal bovine serum (FBS). PC formed upon in vitro incubation was used as a reference. We demonstrate that PC is significantly influenced by exposure to dynamic flow and that changes in PC composition are dependent on both exposure time and NP's surface chemistry. Notably, alterations induced by dynamic flow affected cellular uptake of lipid NPs in both human cervical cancer (HeLa) and human breast adenocarcinoma (MCF7) cell lines.

Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells / Palchetti, Sara; Pozzi, Daniela; Capriotti, ANNA LAURA; Barbera, Giorgia La; Chiozzi, Riccardo Zenezini; Digiacomo, Luca; Peruzzi, Giovanna; Caracciolo, Giulio; Lagana', Aldo. - In: COLLOIDS AND SURFACES. B, BIOINTERFACES. - ISSN 0927-7765. - STAMPA. - 153:(2017), pp. 263-271. [10.1016/j.colsurfb.2017.02.037]

Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells

POZZI, DANIELA;CAPRIOTTI, ANNA LAURA;Digiacomo, Luca;CARACCIOLO, Giulio;LAGANA', Aldo
2017

Abstract

The fast growing use of nanoparticles (NPs) in biotechnology and biomedicine raises concerns about human health and the environment. When introduced in physiological milieus, NPs adsorb biomolecules (especially proteins) forming the so-called protein corona (PC). As it is the PC that mostly interacts with biological systems, it represents a major element of the NPs’ biological identity with impact on nanotoxicology, nanosafety and targeted delivery of nanomedicines. To date, NP-protein interactions have been largely investigated in vitro, but this condition is far from mimicking the dynamic nature of physiological environments. Here we investigate the effect of shear stress on PC by exposing lipid NPs with different surface chemistry (either unmodified and PEGylated) to circulating fetal bovine serum (FBS). PC formed upon in vitro incubation was used as a reference. We demonstrate that PC is significantly influenced by exposure to dynamic flow and that changes in PC composition are dependent on both exposure time and NP's surface chemistry. Notably, alterations induced by dynamic flow affected cellular uptake of lipid NPs in both human cervical cancer (HeLa) and human breast adenocarcinoma (MCF7) cell lines.
2017
Cancer cells; Dynamic flow environment; Nanoparticles; Physiological environments; Protein corona; Biotechnology; Surfaces and Interfaces; Physical and Theoretical Chemistry; Colloid and Surface Chemistry
01 Pubblicazione su rivista::01a Articolo in rivista
Influence of dynamic flow environment on nanoparticle-protein corona: From protein patterns to uptake in cancer cells / Palchetti, Sara; Pozzi, Daniela; Capriotti, ANNA LAURA; Barbera, Giorgia La; Chiozzi, Riccardo Zenezini; Digiacomo, Luca; Peruzzi, Giovanna; Caracciolo, Giulio; Lagana', Aldo. - In: COLLOIDS AND SURFACES. B, BIOINTERFACES. - ISSN 0927-7765. - STAMPA. - 153:(2017), pp. 263-271. [10.1016/j.colsurfb.2017.02.037]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/945270
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 85
social impact