Duchenne muscular dystrophy (DMD) is a lethal disease, determined by lack of dystrophin (Dp427), a muscular cytoskeletal protein also expressed by selected neuronal populations. Consequently, besides muscular wasting, both human patients and DMD animal models suffer several neural disorders. In previous studies on the superior cervical ganglion (SCG) of wild type and dystrophic mdx mice (Lombardi et al. 2008), we hypothesized that Dp427 could play some role in NGF-dependent axonal growth, both during development and adulthood. To ad- dress this issue, we first analyzed axon regeneration potentials of SCG neurons of both genotypes after axotomy in vivo. While noradrenergic innervation of mdx mouse submandibular gland, main source of nerve growth factor (NGF), recovered similarly to wild type, iris innervation (muscular target) never did. We, therefore, evaluated whether dystrophic SCG neurons were poorly responsive to NGF, especially at low concentration. Following in vitro axotomy in the presence of either 10 or 50 ng/ml NGF, the number of regenerated axons in mdx mouse neu- ron cultures was indeed reduced, compared to wild type, at the lower concentration. Neurite growth parameters (i.e. number, length), growth cone dynamics and NGF/TrkA receptor signaling in differentiating neurons (not in- jured) were also significantly reduced when cultured with 10 ng/ml NGF, but also with higher NGF concentra- tions. In conclusion, we propose a role for Dp427 in NGF-dependent cytoskeletal dynamics associated to growth cone advancement, possibly through indirect stabilization of TrkA receptors. Considering NGF activity in nervous system development/remodeling, this aspect could concur in some of the described DMD-associated neural dysfunctions.
NGF-dependent axon growth and regeneration are altered in sympathetic neurons of dystrophic mdx mice / Lombardi, Loredana; Persiconi, Irene; Gallo, Alessandra; Hoogenraad, Casper C.; DE STEFANO, Maria Egle. - In: MOLECULAR AND CELLULAR NEUROSCIENCES. - ISSN 1044-7431. - STAMPA. - 80:(2017), pp. 1-17. [10.1016/j.mcn.2017.01.006]
NGF-dependent axon growth and regeneration are altered in sympathetic neurons of dystrophic mdx mice
LOMBARDI, LOREDANA;PERSICONI, IRENE;DE STEFANO, Maria Egle
2017
Abstract
Duchenne muscular dystrophy (DMD) is a lethal disease, determined by lack of dystrophin (Dp427), a muscular cytoskeletal protein also expressed by selected neuronal populations. Consequently, besides muscular wasting, both human patients and DMD animal models suffer several neural disorders. In previous studies on the superior cervical ganglion (SCG) of wild type and dystrophic mdx mice (Lombardi et al. 2008), we hypothesized that Dp427 could play some role in NGF-dependent axonal growth, both during development and adulthood. To ad- dress this issue, we first analyzed axon regeneration potentials of SCG neurons of both genotypes after axotomy in vivo. While noradrenergic innervation of mdx mouse submandibular gland, main source of nerve growth factor (NGF), recovered similarly to wild type, iris innervation (muscular target) never did. We, therefore, evaluated whether dystrophic SCG neurons were poorly responsive to NGF, especially at low concentration. Following in vitro axotomy in the presence of either 10 or 50 ng/ml NGF, the number of regenerated axons in mdx mouse neu- ron cultures was indeed reduced, compared to wild type, at the lower concentration. Neurite growth parameters (i.e. number, length), growth cone dynamics and NGF/TrkA receptor signaling in differentiating neurons (not in- jured) were also significantly reduced when cultured with 10 ng/ml NGF, but also with higher NGF concentra- tions. In conclusion, we propose a role for Dp427 in NGF-dependent cytoskeletal dynamics associated to growth cone advancement, possibly through indirect stabilization of TrkA receptors. Considering NGF activity in nervous system development/remodeling, this aspect could concur in some of the described DMD-associated neural dysfunctions.File | Dimensione | Formato | |
---|---|---|---|
Lombardi_NGF_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
5.86 MB
Formato
Adobe PDF
|
5.86 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.