We quantify the role of Population (Pop) III core-collapse supernovae (SNe) as the first cosmic dust polluters. Starting from a homogeneous set of stellar progenitors with masses in the range [13–80] M⊙, we find that the mass and composition of newly formed dust depend on the mixing efficiency of the ejecta and the degree of fallback experienced during the explosion. For standard Pop III SNe, whose explosions are calibrated to reproduce the average elemental abundances of Galactic halo stars with [Fe/H] < -2.5, between 0.18 and 3.1 M⊙ (0.39–1.76 M⊙) of dust can form in uniformly mixed (unmixed) ejecta, and the dominant grain species are silicates. We also investigate dust formation in the ejecta of faint Pop III SN, where the ejecta experience a strong fallback. By examining a set of models, tailored to minimize the scatter with the abundances of carbon-enhanced Galactic halo stars with [Fe/H] < -4, we find that amorphous carbon is the only grain species that forms, with masses in the range 2.7×10−3−0.27M⊙ (⁠7.5×10−4−0.11M⊙⁠) for uniformly mixed (unmixed) ejecta models. Finally, for all the models we estimate the amount and composition of dust that survives the passage of the reverse shock, and find that, depending on circumstellar medium densities, between 3 and 50 per cent (10–80 per cent) of dust produced by standard (faint) Pop III SNe can contribute to early dust enrichment.

The metal and dust yields of the first massive stars / Marassi, Stefania; Schneider, Raffaella; Limongi, Marco; Chieffi, Alessandro; Bocchio, Marco; Bianchi, Simone. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 454:4(2015), pp. 4250-4266. [10.1093/mnras/stv2267]

The metal and dust yields of the first massive stars

MARASSI, STEFANIA;SCHNEIDER, Raffaella;
2015

Abstract

We quantify the role of Population (Pop) III core-collapse supernovae (SNe) as the first cosmic dust polluters. Starting from a homogeneous set of stellar progenitors with masses in the range [13–80] M⊙, we find that the mass and composition of newly formed dust depend on the mixing efficiency of the ejecta and the degree of fallback experienced during the explosion. For standard Pop III SNe, whose explosions are calibrated to reproduce the average elemental abundances of Galactic halo stars with [Fe/H] < -2.5, between 0.18 and 3.1 M⊙ (0.39–1.76 M⊙) of dust can form in uniformly mixed (unmixed) ejecta, and the dominant grain species are silicates. We also investigate dust formation in the ejecta of faint Pop III SN, where the ejecta experience a strong fallback. By examining a set of models, tailored to minimize the scatter with the abundances of carbon-enhanced Galactic halo stars with [Fe/H] < -4, we find that amorphous carbon is the only grain species that forms, with masses in the range 2.7×10−3−0.27M⊙ (⁠7.5×10−4−0.11M⊙⁠) for uniformly mixed (unmixed) ejecta models. Finally, for all the models we estimate the amount and composition of dust that survives the passage of the reverse shock, and find that, depending on circumstellar medium densities, between 3 and 50 per cent (10–80 per cent) of dust produced by standard (faint) Pop III SNe can contribute to early dust enrichment.
2015
Galaxies: evolution; galaxy: halo; ISM: clouds; stars: low-mass; supernovae: general; Astronomy and Astrophysics; Space and Planetary Science
01 Pubblicazione su rivista::01a Articolo in rivista
The metal and dust yields of the first massive stars / Marassi, Stefania; Schneider, Raffaella; Limongi, Marco; Chieffi, Alessandro; Bocchio, Marco; Bianchi, Simone. - In: MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY. - ISSN 0035-8711. - 454:4(2015), pp. 4250-4266. [10.1093/mnras/stv2267]
File allegati a questo prodotto
File Dimensione Formato  
Marassi_The-metals-and-dust-yields_2015.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 768.52 kB
Formato Adobe PDF
768.52 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/939308
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 41
social impact