We discuss Generalised Least Squares (GLS) map-making for the data of the Herschel satellite's photometers, which is a difficult task, due to the many disturbances affecting the data, and requires appropriate pre- and post-processing. Taking an existing map-maker as a reference, we propose several advanced techniques, which can improve both the quality of the estimate and the efficiency of the software. As a main contribution we discuss two disturbances, which have not been studied yet and may be detrimental to the image quality. The first is a data shift, due to delays in the timing system or in the processing chain. The second is a random noise, termed pixel noise, due to the jitter and the approximation of the pointing information. For both these disturbances, we develop a mathematical model and propose a compensation method. As an additional contribution, we note that the performance can be improved by properly adapting the algorithm parameters to the data being processed and discuss an automatic setting method. We also provide a rich set of examples and experiments, illustrating the impact of the proposed techniques on the image quality and the execution speed

We discuss Generalised Least Squares (GLS) map-making for the data of the Herschel satellite's photometers, which is a difficult task, due to the many disturbances affecting the data, and requires appropriate pre- and post-processing. Taking an existing map-maker as a reference, we propose several advanced techniques, which can improve both the quality of the estimate and the efficiency of the software. As a main contribution we discuss two disturbances, which have not been studied yet and may be detrimental to the image quality. The first is a data shift, due to delays in the timing system or in the processing chain. The second is a random noise, termed pixel noise, due to the jitter and the approximation of the pointing information. For both these disturbances, we develop a mathematical model and propose a compensation method. As an additional contribution, we note that the performance can be improved by properly adapting the algorithm parameters to the data being processed and discuss an automatic setting method. We also provide a rich set of examples and experiments, illustrating the impact of the proposed techniques on the image quality and the execution speed

Advanced GLS map-making for the Herschel's photometers / Piazzo, Lorenzo; Raguso, MARIA CARMELA; Mastrogiuseppe, Marco; Calzoletti, Luca; Altieri, Bruno. - STAMPA. - 9913:(2016), p. 991326. (Intervento presentato al convegno Software and Cyberinfrastructure for Astronomy IV tenutosi a edinburgh, UK nel 2016) [10.1117/12.2232424].

Advanced GLS map-making for the Herschel's photometers

PIAZZO, Lorenzo;RAGUSO, MARIA CARMELA;MASTROGIUSEPPE, MARCO;
2016

Abstract

We discuss Generalised Least Squares (GLS) map-making for the data of the Herschel satellite's photometers, which is a difficult task, due to the many disturbances affecting the data, and requires appropriate pre- and post-processing. Taking an existing map-maker as a reference, we propose several advanced techniques, which can improve both the quality of the estimate and the efficiency of the software. As a main contribution we discuss two disturbances, which have not been studied yet and may be detrimental to the image quality. The first is a data shift, due to delays in the timing system or in the processing chain. The second is a random noise, termed pixel noise, due to the jitter and the approximation of the pointing information. For both these disturbances, we develop a mathematical model and propose a compensation method. As an additional contribution, we note that the performance can be improved by properly adapting the algorithm parameters to the data being processed and discuss an automatic setting method. We also provide a rich set of examples and experiments, illustrating the impact of the proposed techniques on the image quality and the execution speed
2016
Software and Cyberinfrastructure for Astronomy IV
We discuss Generalised Least Squares (GLS) map-making for the data of the Herschel satellite's photometers, which is a difficult task, due to the many disturbances affecting the data, and requires appropriate pre- and post-processing. Taking an existing map-maker as a reference, we propose several advanced techniques, which can improve both the quality of the estimate and the efficiency of the software. As a main contribution we discuss two disturbances, which have not been studied yet and may be detrimental to the image quality. The first is a data shift, due to delays in the timing system or in the processing chain. The second is a random noise, termed pixel noise, due to the jitter and the approximation of the pointing information. For both these disturbances, we develop a mathematical model and propose a compensation method. As an additional contribution, we note that the performance can be improved by properly adapting the algorithm parameters to the data being processed and discuss an automatic setting method. We also provide a rich set of examples and experiments, illustrating the impact of the proposed techniques on the image quality and the execution speed
Infrared imaging; least squares; electronic, optical and magnetic materials; condensed matter physics; computer science applications1707 computer vision and pattern recognition; applied mathematics; electrical and electronic engineering
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Advanced GLS map-making for the Herschel's photometers / Piazzo, Lorenzo; Raguso, MARIA CARMELA; Mastrogiuseppe, Marco; Calzoletti, Luca; Altieri, Bruno. - STAMPA. - 9913:(2016), p. 991326. (Intervento presentato al convegno Software and Cyberinfrastructure for Astronomy IV tenutosi a edinburgh, UK nel 2016) [10.1117/12.2232424].
File allegati a questo prodotto
File Dimensione Formato  
Piazzo_Advanced-GLS_2016.pdf

solo gestori archivio

Note: articolo principale
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 2.71 MB
Formato Adobe PDF
2.71 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/936998
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact