Pectin is a very abundant component of the plant cell wall that play important roles in growth and defence against pathogens. Pectin can be hydrolyzed by polygalacturonases secreted by both plant cells and microbial pathogens. Arabidopsis thaliana plants expressing a fungal PG (35S:AnPGII plants) are dwarf, indicating that pectin integrity affects plant biomass production. To obtain insights in the molecular mechanisms responsible for the effects of pectin on plant growth, a microarray analysis of 35S:AnPGII plants was performed and one of the genes most up-regulated compared to WT plants, AtPRX71, encoding a class III peroxidase, was selected for further characterization. Reverse genetics analyses indicated that AtPRX71 has a negative effect on plant growth both under physiological conditions and in response to cell wall damage. It can be hypothesized that AtPRX71 expression may be part of a general response to loss of cell wall integrity. Indeed a mutant for pectin biosynthesis, qua2-1, show the same downstream responses as 35S:AnPGII. A more detailed comparison between qua2-1 and 35S:AnPGII plants shows that the molecular players involved in their altered growth phenotypes only partially overlap. Growth defects observed in these plants might be triggered by cell wall fragments released in the apoplast. Indeed, pectin degradation during pathogen infection is thought to release oligogalacturonides (OGs), oligomers of galacturonic acid that can activate plant defence responses. Accumulation of OGs with eliciting activity is favoured when fungal PGs are inhibited by plant PG-Inhibiting Proteins (PGIPs). To investigate the effects of the in vivo production of OGs on plant growth and defence, Arabidopsis plants expressing a fusion protein between a PG and a PGIP, named OG-machine (OGM), were generated. Expression of the OGM increased resistance against a broad spectrum of pathogens, but also decreased plant growth in a dose-dependent fashion. These results suggest that endogenous OGs can act as signals for pectin damage, promoting defence responses but inhibiting plant growth.
La pectina è un componente abbondante della parete cellulare vegetale e svolge un ruolo importante durante la crescita e durante i processi di difesa nei confronti dei patogeni. La pectina può essere idrolizzata dall’azione di poligalatturonasi (PG) prodotte dalla pianta stessa o da microrganismi patogeni. Piante di Arabidopsis thaliana che esprimono una PG fungina (chiamate 35S:AnPGII) mostrano un fenotipo nano, suggerendo che l’integrità della pectina è fondamentale per la produzione di biomassa. Per comprendere i meccanismi molecolari responsabili degli effetti della pectina sulla crescita, è stata condotta un’analisi di microarray sulle piante 35S:AnPGII. Uno dei geni maggiormente espressi rispetto alle piante wild-type, AtPRX71 che codifica per una perossidasi di classe III, è stato selezionato per ulteriori caratterizzazioni. Utilizzando un approccio di genetica inversa, AtPRX71 risulta avere un effetto negativo sulla crescita della pianta sia in condizioni fisiologiche sia in risposta a danni a carico della parete. Sulla base dei risultati ottenuti si può ipotizzare che l’espressione di AtPRX71 faccia parte di un meccanismo generale di risposta alla perdita di integrità della parete. Infatti qua2-1, un mutante per un gene coinvolto nella biosintesi della pectina, mostra risposte a valle simili a quelle delle piante 35S:AnPGII. Tuttavia, un confronto più dettagliato tra piante 35S:AnPGII e qua2-1 ha indicato che i meccanismi molecolari responsabili della loro crescita alterata sono solo parzialmente sovrapposti. I difetti di crescita in queste piante potrebbero essere causati dal rilascio di frammenti di parete cellulare rilasciati nell’apoplasto. Difatti, la degradazione della pectina durante l’attacco di un patogeno rilascia oligogalatturonidi (OGs), oligomeri di acido galatturonico che attivano le risposte di difesa nella pianta. L’accumulo di OGs nell’apoplasto è favorito quando l’azione della PG fungina è rallentata da proteine prodotte dalla piante che inibiscono le PG (PGIPs). Per investigare gli effetti sulla crescita e sulla difesa in seguito alla produzione di OGs in vivo sono state generate piante di Arabidopsis, chiamate OG-machine (OGM), che esprimono una fusione proteica tra una PG e una PGIP. L’espressione della OGM aumenta la resistenza della pianta nei confronti di un ampio spettro di patogeni ma ha anche un effetto negativo sulla crescita correlato al suo livello di espressione. Questi risultati suggeriscono che gli OGs endogeni possono segnalare un danno alla pectina, promuovendo le risposte di difesa ma con un effetto negativo sulla crescita della pianta.
Role of pectin in plant growth and defence / Raggi, Sara. - ELETTRONICO. - (2015 Feb 12).
Role of pectin in plant growth and defence
RAGGI, SARA
12/02/2015
Abstract
Pectin is a very abundant component of the plant cell wall that play important roles in growth and defence against pathogens. Pectin can be hydrolyzed by polygalacturonases secreted by both plant cells and microbial pathogens. Arabidopsis thaliana plants expressing a fungal PG (35S:AnPGII plants) are dwarf, indicating that pectin integrity affects plant biomass production. To obtain insights in the molecular mechanisms responsible for the effects of pectin on plant growth, a microarray analysis of 35S:AnPGII plants was performed and one of the genes most up-regulated compared to WT plants, AtPRX71, encoding a class III peroxidase, was selected for further characterization. Reverse genetics analyses indicated that AtPRX71 has a negative effect on plant growth both under physiological conditions and in response to cell wall damage. It can be hypothesized that AtPRX71 expression may be part of a general response to loss of cell wall integrity. Indeed a mutant for pectin biosynthesis, qua2-1, show the same downstream responses as 35S:AnPGII. A more detailed comparison between qua2-1 and 35S:AnPGII plants shows that the molecular players involved in their altered growth phenotypes only partially overlap. Growth defects observed in these plants might be triggered by cell wall fragments released in the apoplast. Indeed, pectin degradation during pathogen infection is thought to release oligogalacturonides (OGs), oligomers of galacturonic acid that can activate plant defence responses. Accumulation of OGs with eliciting activity is favoured when fungal PGs are inhibited by plant PG-Inhibiting Proteins (PGIPs). To investigate the effects of the in vivo production of OGs on plant growth and defence, Arabidopsis plants expressing a fusion protein between a PG and a PGIP, named OG-machine (OGM), were generated. Expression of the OGM increased resistance against a broad spectrum of pathogens, but also decreased plant growth in a dose-dependent fashion. These results suggest that endogenous OGs can act as signals for pectin damage, promoting defence responses but inhibiting plant growth.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.