Biomimicry is an applied science that derives inspiration for solutions to human problems through the study of natural designs, materials, structures and processes. Many fields of study benefit from biomimetic inspirations, such as agriculture, medicine, engineering, and architecture. Technological advances in parametric and computational design software in addition to environmental simulation means offer very useful tools in order to explore the potential of nature’s inspirations in architectural designs that does not just mimic shapes and forms. Energy efficiency is one of the major and growing concerns facing architects. Cooling and ventilation needs are critical factors that affect energy efficiency especially in hot climates. This thesis addresses the problem of designing building skins that are energy efficient in the context of hot climates such as that in Egypt. The research attempts to define and apply a biomimetic-computational design approach to study and analyse natural organisms in terms of their behaviour regarding thermoregulation. Aiming to decrease cooling loads, the research explores possible architectural solutions for a biologically inspired skin system for office buildings. The building’s skin is parametrically designed using Grasshopper Visual Programming Language for Rhino 3D Modeller, and it is optimised using multi-objective evolutionary algorithms which are particularly important in the attempt of finding a range of solutions that reduce cooling loads while maintaining daylight needs. Consequently, the reduction in cooling loads should not be at the expense of increased energy consumption in artificial lighting. Simulations regarding the thermal performance were performed using EnergyPlus. A Double-Skin Façade (DSF) is proposed based on inspirations from nature. In order to evaluate the performance of the proposal, it is compared to the performance of the skin of an existing office building in Cairo acting as a reference case. Data regarding the reference case such as the building drawings, material specifications and annual cooling consumption were obtained in order to build its digital model and assess its accuracy. The proposed design is also evaluated by comparing it to a typical flat DSF. The obtained results regarding the thermal performance of the proposed building skin are verified by comparing them to results of more accurate simulations performed using Computational Fluid Dynamics (CFD). The aim is to know the degree of error as well as the appropriateness of using EnergyPlus for geometrically-complex DSFs in early design phases when CFD is not practical. The proposed DSF was able to decrease cooling loads by up to 13.4% while improving daylight performance at the same time which is often one of the main challenges of using DSFs. The research criticises the presented design approach as a whole, the design/simulation tools used and the performance of the proposed skin discussing their benefits and limitations. Based on the design experimentation and results, general guidelines and recommendations for DSF design in hot climates are presented. Additionally, the research presents a compiled matrix of the biomimetic ideas explored and analysed in order to serve as a mini-data bank for architects or designers interested in this design approach in addressing thermoregulation problems. Finally, the comparison between EnergyPlus and CFD software results showed minor differences.
La Biomimicry è una scienza applicata che studia le forme, i materiali, i sistemi e i processi naturali per individuare soluzioni applicabili anche a problemi umani. Tale scienza trova applicazione in molti campi, quali l’agricoltura, la medicina, l’ingegneria e l’architettura. Grazie ai progressi compiuti nella modellazione parametrica, ad oggi sono disponibili potenti strumenti che, oltre alla simulazione energetica, consentono di esplorare le potenzialità delle soluzioni tratte dal mondo naturale nella progettazione architettonica, superando i limiti della semplice imitazione della forma. Una delle maggiori sfide per gli architetti negli ultimi anni è la riduzione della domanda energetica del costruito. Per i climi caldi, le esigenze di ventilazione e raffrescamento sono pertanto fattori cruciali per migliorarne la prestazione energetica. La tesi di ricerca affronta il problema della progettazione e dell’efficienza energetica dell’involucro edilizio in contesti climatici caldi, quale l’Egitto. A tal fine, è stato definito e applicato un approccio progettuale biomimetico-computazionale, per studiare e analizzare i comportamenti adattivi di termoregolazione di vari organismi naturali. In particolare, il lavoro di ricerca esplora possibili soluzioni architettoniche, ispirate a caratteristiche biologiche, per l’involucro di un edificio per uffici, con l’obiettivo di ridurre la domanda energetica per il raffrescamento. L’involucro dell’edificio è stato modellato parametricamente utilizzando Grasshopper Visual Programming Language per Rhino 3D Modeller, applicando inoltre alcuni algoritmi evolutivi multi-obiettivo per ottimizzare la soluzione architettonica rispetto al duplice obiettivo di diminuire i carichi di raffrescamento e mantenere un buon livello di illuminazione naturale. In tal modo, la riduzione dei carichi di raffreddamento non comporta un incremento dei consumi elettrici per l'illuminazione artificiale. Le prestazioni termiche dell’edificio sono state valutate con il software EnergyPlus. La soluzione architettonica esplorata è una facciata a doppia pelle ispirata a vari principi della natura. Le prestazioni della soluzione proposta sono state confrontate con quelle di un edificio per uffici esistente a Il Cairo. Il modello dell’edificio è stato ricostruito sulla base di planimetrie e specifiche sui materiali presenti; inoltre la disponibilità di dati sui consumi energetici per il raffrescamento dell’edificio ha permesso di valutare l’accuratezza della prestazione energetica calcolata con il software di modellazione. La soluzione progettuale è stata comparate anche rispetto alle prestazioni di una tipica facciata a doppia pelle. Inoltre le prestazioni termiche calcolate con EnergyPlus sono state confrontate con quelle ottenute con software di simulazione fluidodinamica computazionale (CFD), più accurati nel calcolo delle facciate a doppia pelle. Tale comparazione ha permesso di identificare il grado di errore e l’appropriatezza dell’uso di EnergyPlus nelle fasi iniziali della progettazione. La facciata a doppia pelle proposta consente una diminuzione della domanda di raffrescamento fino al 13,4%, migliorando al tempo stesso il livello di illuminazione naturale, che spesso costituisce uno dei maggiori limiti per l’applicazione di tale sistema. La ricerca termina con una sintesi dei risultati ottenuti e una valutazione complessiva del processo di progettazione presentato, degli strumenti di progettazione/simulazione utilizzati e delle prestazioni dell’involucro proposto, discutendone vantaggi e limiti. Sulla base delle sperimentazioni e dei risultati conseguiti, sono state individuate linee guida e raccomandazioni per la progettazione delle facciate a doppia pelle nei climi caldi. Inoltre viene fornita una matrice che raccoglie tutte le idee biomimetiche esplorate e analizzate, che rappresenta una mini-banca dati per architetti o designer interessati a questo approccio progettuale nell’affrontare i problemi di termoregolazione del costruito. Infine, la differenza di accuratezza tra i risultati di EnergyPlus e quelli dello strumento CFD è risultata trascurabile.
Biologically-inspired double skin facades for hot climates: a parametric approach for performative design / Elahmar, SALMA ASHRAF SAAD. - (2016 Dec 12).
Biologically-inspired double skin facades for hot climates: a parametric approach for performative design
ELAHMAR, SALMA ASHRAF SAAD
12/12/2016
Abstract
Biomimicry is an applied science that derives inspiration for solutions to human problems through the study of natural designs, materials, structures and processes. Many fields of study benefit from biomimetic inspirations, such as agriculture, medicine, engineering, and architecture. Technological advances in parametric and computational design software in addition to environmental simulation means offer very useful tools in order to explore the potential of nature’s inspirations in architectural designs that does not just mimic shapes and forms. Energy efficiency is one of the major and growing concerns facing architects. Cooling and ventilation needs are critical factors that affect energy efficiency especially in hot climates. This thesis addresses the problem of designing building skins that are energy efficient in the context of hot climates such as that in Egypt. The research attempts to define and apply a biomimetic-computational design approach to study and analyse natural organisms in terms of their behaviour regarding thermoregulation. Aiming to decrease cooling loads, the research explores possible architectural solutions for a biologically inspired skin system for office buildings. The building’s skin is parametrically designed using Grasshopper Visual Programming Language for Rhino 3D Modeller, and it is optimised using multi-objective evolutionary algorithms which are particularly important in the attempt of finding a range of solutions that reduce cooling loads while maintaining daylight needs. Consequently, the reduction in cooling loads should not be at the expense of increased energy consumption in artificial lighting. Simulations regarding the thermal performance were performed using EnergyPlus. A Double-Skin Façade (DSF) is proposed based on inspirations from nature. In order to evaluate the performance of the proposal, it is compared to the performance of the skin of an existing office building in Cairo acting as a reference case. Data regarding the reference case such as the building drawings, material specifications and annual cooling consumption were obtained in order to build its digital model and assess its accuracy. The proposed design is also evaluated by comparing it to a typical flat DSF. The obtained results regarding the thermal performance of the proposed building skin are verified by comparing them to results of more accurate simulations performed using Computational Fluid Dynamics (CFD). The aim is to know the degree of error as well as the appropriateness of using EnergyPlus for geometrically-complex DSFs in early design phases when CFD is not practical. The proposed DSF was able to decrease cooling loads by up to 13.4% while improving daylight performance at the same time which is often one of the main challenges of using DSFs. The research criticises the presented design approach as a whole, the design/simulation tools used and the performance of the proposed skin discussing their benefits and limitations. Based on the design experimentation and results, general guidelines and recommendations for DSF design in hot climates are presented. Additionally, the research presents a compiled matrix of the biomimetic ideas explored and analysed in order to serve as a mini-data bank for architects or designers interested in this design approach in addressing thermoregulation problems. Finally, the comparison between EnergyPlus and CFD software results showed minor differences.File | Dimensione | Formato | |
---|---|---|---|
Tesi dottorato El Ahmar
Open Access dal 13/12/2017
Note: PhD Dissertation
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
17.03 MB
Formato
Adobe PDF
|
17.03 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.