Software defined networking (SDN) is a new networking paradigm that in recent years has revolutionized network architectures. At its core, SDN separates the data plane, which provides data forwarding functionalities, and the control plane, which implements the network control logic. The separation of these two components provides a virtually centralized point of control in the network, and at the same time abstracts the complexity of the underlying physical infrastructure. Unfortunately, while promising, the SDN approach also introduces new attacks and vulnerabilities. Indeed, previous research shows that, under certain traffic conditions, the required communication between the control and data plane can result in a bottleneck. An attacker can exploit this limitation to mount a new, network-wide, type of denial of service attack, known as the control plane saturation attack. This paper presents LineSwitch, an efficient and effective data plane solution to tackle the control plane saturation attack. LineSwitch employs probabilistic proxying and blacklisting of network traffic to prevent the attack from reaching the control plane, and thus preserve network functionality. We implemented LineSwitch as an extension of the reference SDN implementation, OpenFlow, and run a thorough set of experiments under different traffic and attack scenarios. We compared LineSwitch to the state of the art, and we show that it provides at the same time, the same level of protection against the control plane saturation attack, and a reduced time overhead by up to 30%.
LineSwitch: Tackling Control Plane Saturation Attacks in Software-Defined Networking / Ambrosin, Moreno; Conti, Mauro; DE GASPARI, Fabio; Poovendran, Radha. - In: IEEE-ACM TRANSACTIONS ON NETWORKING. - ISSN 1063-6692. - 25:2(2017), pp. 1206-1219. [10.1109/TNET.2016.2626287]
LineSwitch: Tackling Control Plane Saturation Attacks in Software-Defined Networking
CONTI, MAURO
;DE GASPARI, FABIO
;
2017
Abstract
Software defined networking (SDN) is a new networking paradigm that in recent years has revolutionized network architectures. At its core, SDN separates the data plane, which provides data forwarding functionalities, and the control plane, which implements the network control logic. The separation of these two components provides a virtually centralized point of control in the network, and at the same time abstracts the complexity of the underlying physical infrastructure. Unfortunately, while promising, the SDN approach also introduces new attacks and vulnerabilities. Indeed, previous research shows that, under certain traffic conditions, the required communication between the control and data plane can result in a bottleneck. An attacker can exploit this limitation to mount a new, network-wide, type of denial of service attack, known as the control plane saturation attack. This paper presents LineSwitch, an efficient and effective data plane solution to tackle the control plane saturation attack. LineSwitch employs probabilistic proxying and blacklisting of network traffic to prevent the attack from reaching the control plane, and thus preserve network functionality. We implemented LineSwitch as an extension of the reference SDN implementation, OpenFlow, and run a thorough set of experiments under different traffic and attack scenarios. We compared LineSwitch to the state of the art, and we show that it provides at the same time, the same level of protection against the control plane saturation attack, and a reduced time overhead by up to 30%.File | Dimensione | Formato | |
---|---|---|---|
Ambrosin_LineSwitch_2017.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.