Efficient organic solar cells are based on (electron) donor−acceptor heterojunctions. An optically generated excited molecular state (exciton) is dissociated at this junction, forming a charge-transfer (CT) state in an intermediate step before the electron and hole are completely separated. The observed highly efficient dissociation of this Coulombically bound state raises the question on the dissociation mechanism. Here, we show that the observed high quantum yields of charge carrier generation and CT state dissociation are due to extended (and consequently weakly bound) CT states visible in absorption and emission spectra and first-principles calculations. Identifying a new geminate-pair loss mechanism via donor excimers, we find that the hole on the small- molecule donor is not localized on a single molecule and charge separation is correlated with the energetic offset between excimer and CT states. Thus, the charges upon interface charge transfer and even in the case of back-transfer and recombination are less localized than commonly assumed.

Extended intermolecular interactions governing photocurrent-voltage relations in ternary organic solar cells / Tress, Wolfgang; Beyer, Beatrice; Ashari Astani, Negar; Gao, Feng; Meloni, Simone; Rothlisberger, Ursula. - In: THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS. - ISSN 1948-7185. - ELETTRONICO. - 7:19(2016), pp. 3936-3944. [10.1021/acs.jpclett.6b01962]

Extended intermolecular interactions governing photocurrent-voltage relations in ternary organic solar cells

MELONI, Simone;
2016

Abstract

Efficient organic solar cells are based on (electron) donor−acceptor heterojunctions. An optically generated excited molecular state (exciton) is dissociated at this junction, forming a charge-transfer (CT) state in an intermediate step before the electron and hole are completely separated. The observed highly efficient dissociation of this Coulombically bound state raises the question on the dissociation mechanism. Here, we show that the observed high quantum yields of charge carrier generation and CT state dissociation are due to extended (and consequently weakly bound) CT states visible in absorption and emission spectra and first-principles calculations. Identifying a new geminate-pair loss mechanism via donor excimers, we find that the hole on the small- molecule donor is not localized on a single molecule and charge separation is correlated with the energetic offset between excimer and CT states. Thus, the charges upon interface charge transfer and even in the case of back-transfer and recombination are less localized than commonly assumed.
2016
charge-transfer states; open-circuit voltage; donor-acceptor interface
01 Pubblicazione su rivista::01a Articolo in rivista
Extended intermolecular interactions governing photocurrent-voltage relations in ternary organic solar cells / Tress, Wolfgang; Beyer, Beatrice; Ashari Astani, Negar; Gao, Feng; Meloni, Simone; Rothlisberger, Ursula. - In: THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS. - ISSN 1948-7185. - ELETTRONICO. - 7:19(2016), pp. 3936-3944. [10.1021/acs.jpclett.6b01962]
File allegati a questo prodotto
File Dimensione Formato  
Tress_extended-intermolecular-interactions_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 3.98 MB
Formato Adobe PDF
3.98 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/932439
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact