A methodology for 3D surface modeling from a single image is proposed. The principal novelty is concave and specular surface modeling without any externally imposed prior. The main idea of the method is to use BRDFs and generated rendered surfaces, to transfer the normal field, computed for the generated samples, to the unknown surface. The transferred information is adequate to blow and sculpt the segmented image mask in to a bas-relief of the object. The object surface is further refined basing on a photo-consistency formulation that relates for error minimization the original image and the modeled object.

Single image object modeling based on BRDF and r-surfaces learning / Natola, Fabrizio; Ntouskos, Valsamis; PIRRI ARDIZZONE, Maria Fiora; Sanzari, Marta. - ELETTRONICO. - (2016), pp. 4414-4423. (Intervento presentato al convegno 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 tenutosi a Las Vegas; United States nel 2016) [10.1109/CVPR.2016.478].

Single image object modeling based on BRDF and r-surfaces learning

NATOLA, FABRIZIO
;
NTOUSKOS, VALSAMIS
;
PIRRI ARDIZZONE, Maria Fiora
;
SANZARI, MARTA
2016

Abstract

A methodology for 3D surface modeling from a single image is proposed. The principal novelty is concave and specular surface modeling without any externally imposed prior. The main idea of the method is to use BRDFs and generated rendered surfaces, to transfer the normal field, computed for the generated samples, to the unknown surface. The transferred information is adequate to blow and sculpt the segmented image mask in to a bas-relief of the object. The object surface is further refined basing on a photo-consistency formulation that relates for error minimization the original image and the modeled object.
2016
29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016
Software; Computer vision; Face recognition
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Single image object modeling based on BRDF and r-surfaces learning / Natola, Fabrizio; Ntouskos, Valsamis; PIRRI ARDIZZONE, Maria Fiora; Sanzari, Marta. - ELETTRONICO. - (2016), pp. 4414-4423. (Intervento presentato al convegno 29th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016 tenutosi a Las Vegas; United States nel 2016) [10.1109/CVPR.2016.478].
File allegati a questo prodotto
File Dimensione Formato  
Natola_Single-Image_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF   Contatta l'autore
Natola_postprint_Single-Image_2016.pdf

accesso aperto

Note: https://ieeexplore.ieee.org/document/7780847
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.05 MB
Formato Adobe PDF
4.05 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/932021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact