We investigated the conceptual processing of nouns referring to objects characterized by a highly typical color and orientation. We used a go/no-go task in which we asked participants to categorize each noun as referring or not to natural entities (e.g., animals) after a selective adaptation of color-edge neurons in the posterior LV4 region of the visual cortex was induced by means of a McCollough effect procedure. This manipulation affected categorization: the green-vertical adaptation led to slower responses than the green-horizontal adaptation, regardless of the specific color and orientation of the to-be-categorized noun. This result suggests that the conceptual processing of natural entities may entail the activation of modality-specific neural channels with weights proportional to the reliability of the signals produced by these channels during actual perception. This finding is discussed with reference to the debate about the grounded cognition view.
Neural adaptation effects in conceptual processing / Marino, Barbara F. M; Borghi, ANNA MARIA; Gemmi, Luca; Cacciari, Cristina; Riggio, Lucia. - In: BEHAVIORAL SCIENCES. - ISSN 2076-328X. - ELETTRONICO. - 5:3(2015), pp. 353-371. [10.3390/bs5030353]
Neural adaptation effects in conceptual processing
BORGHI, ANNA MARIA;
2015
Abstract
We investigated the conceptual processing of nouns referring to objects characterized by a highly typical color and orientation. We used a go/no-go task in which we asked participants to categorize each noun as referring or not to natural entities (e.g., animals) after a selective adaptation of color-edge neurons in the posterior LV4 region of the visual cortex was induced by means of a McCollough effect procedure. This manipulation affected categorization: the green-vertical adaptation led to slower responses than the green-horizontal adaptation, regardless of the specific color and orientation of the to-be-categorized noun. This result suggests that the conceptual processing of natural entities may entail the activation of modality-specific neural channels with weights proportional to the reliability of the signals produced by these channels during actual perception. This finding is discussed with reference to the debate about the grounded cognition view.File | Dimensione | Formato | |
---|---|---|---|
marino_neural_2015.pdf
accesso aperto
Note: Articolo principale
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
1.65 MB
Formato
Adobe PDF
|
1.65 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.