In the framework of the Future Internet, the aim of the Quality of Experience (QoE) Control functionalities is to track the personalized desired QoE level of the applications. The paper proposes to perform such a task by dynamically selecting the most appropriate Classes of Service (among the ones supported by the network), this selection being driven by a novel heuristic Multi-Agent Reinforcement Learning (MARL) algorithm. The paper shows that such an approach offers the opportunity to cope with some practical implementation problems: in particular, it allows to face the so-called “curse of dimensionality” of MARL algorithms, thus achieving satisfactory performance results even in the presence of several hundreds of Agents.

Multi-agent quality of experience control / DELLI PRISCOLI, Francesco; DI GIORGIO, Alessandro; Lisi, Federico; Monaco, Salvatore; Pietrabissa, Antonio; RICCIARDI CELSI, Lorenzo; Suraci, Vincenzo. - In: INTERNATIONAL JOURNAL OF CONTROL, AUTOMATION, AND SYSTEMS. - ISSN 1598-6446. - STAMPA. - 15:2(2017), pp. 892-904. [10.1007/s12555-015-0465-5]

Multi-agent quality of experience control

DELLI PRISCOLI, Francesco;DI GIORGIO, ALESSANDRO;LISI, FEDERICO;MONACO, Salvatore;PIETRABISSA, Antonio;RICCIARDI CELSI, LORENZO
;
2017

Abstract

In the framework of the Future Internet, the aim of the Quality of Experience (QoE) Control functionalities is to track the personalized desired QoE level of the applications. The paper proposes to perform such a task by dynamically selecting the most appropriate Classes of Service (among the ones supported by the network), this selection being driven by a novel heuristic Multi-Agent Reinforcement Learning (MARL) algorithm. The paper shows that such an approach offers the opportunity to cope with some practical implementation problems: in particular, it allows to face the so-called “curse of dimensionality” of MARL algorithms, thus achieving satisfactory performance results even in the presence of several hundreds of Agents.
2017
Future internet; multi-agent reinforcement learning; quality of experience; quality of service; Control and Systems Engineering; Computer Science Applications1707 Computer Vision and Pattern Recognition
01 Pubblicazione su rivista::01a Articolo in rivista
Multi-agent quality of experience control / DELLI PRISCOLI, Francesco; DI GIORGIO, Alessandro; Lisi, Federico; Monaco, Salvatore; Pietrabissa, Antonio; RICCIARDI CELSI, Lorenzo; Suraci, Vincenzo. - In: INTERNATIONAL JOURNAL OF CONTROL, AUTOMATION, AND SYSTEMS. - ISSN 1598-6446. - STAMPA. - 15:2(2017), pp. 892-904. [10.1007/s12555-015-0465-5]
File allegati a questo prodotto
File Dimensione Formato  
DelliPriscoli_Multi-agent-Quality_Postprint_2017.pdf

Open Access dal 01/05/2018

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF
DelliPriscoli_Multi-agent-Quality_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 550.25 kB
Formato Adobe PDF
550.25 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/930733
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact