Acute myeloid leukemia (AML) is caused by the blockade of hematopoietic myeloid precursors at different stages of differentiation. A subtype of AML, acute promyelocytic leukemia (APL), is a paradigm of differentiation therapy since retinoic acid (RA) is able to induce leukemic blast terminal differentiation leading to cure rates exceeding 80% when administered in combination with chemotherapy. Although APL patients refractory to RA or who relapsed are very effectively treated with arsenic trioxide (ATO) in combination with RA, the elevated costs limit its use in developing countries and in first line therapy so that RA plus chemotherapy currently remain the standard of care (1, 2). Most importantly non-APL acute myeloid leukemia do not respond to RA indicating the need for novel strategies to sensitize AML cells to RA. Here we show that RA-triggered differentiation of APL cells induces endoplasmic reticulum (ER) stress slightly activating the unfolded protein response (UPR). This is sufficient to render leukemic cell lines and human primary blasts very sensitive to doses of ER stress inducing drugs, like tunicamycin (Tm), that are not toxic for the same cells in the absence of RA or for most cell types. Furthermore we observed that low doses of Tm, even in the absence of RA, are sufficient to strongly increase ATO toxicity. Indeed both RA-sensitive and RA-resistant APL cell lines resulted sensitive to Tm-ATO combined treatment at low doses of ATO that are ineffective in the absence of ER stress. The use of inhibitors targeting specific UPR branches indicate that the Protein Kinase RNA-like Endoplasmic Reticulum kinase (PERK) pathway protects differentiating APL cells from ER stress rendering it an interesting therapeutic molecular target. Finally, we extended our observations in a non-APL model, assessing that RA sensitize the non-APL cell line HL60 to ER stress. Altogether our data indicate ER stress as a possible target for designing novel combination therapeutic strategies in AML.

Retinoic acid sensitizes acute myeloid leukemia cells to ER stress / Masciarelli, Silvia; Capuano, Ernestina; Bellissimo, Teresa; Ottone, T.; Divona, M. D.; Lo Coco, F.; Fazi, Francesco. - In: ITALIAN JOURNAL OF ANATOMY AND EMBRYOLOGY. - ISSN 1122-6714. - STAMPA. - 121:1 (supplement)(2016), pp. 142-142. (Intervento presentato al convegno 70° Meeting of the Italian Society of Anatomy and Histology tenutosi a Rome nel 15-17 September 2016) [10.13128/IJAE-21779].

Retinoic acid sensitizes acute myeloid leukemia cells to ER stress

MASCIARELLI, SILVIA;CAPUANO, ERNESTINA;BELLISSIMO, TERESA;FAZI, Francesco
2016

Abstract

Acute myeloid leukemia (AML) is caused by the blockade of hematopoietic myeloid precursors at different stages of differentiation. A subtype of AML, acute promyelocytic leukemia (APL), is a paradigm of differentiation therapy since retinoic acid (RA) is able to induce leukemic blast terminal differentiation leading to cure rates exceeding 80% when administered in combination with chemotherapy. Although APL patients refractory to RA or who relapsed are very effectively treated with arsenic trioxide (ATO) in combination with RA, the elevated costs limit its use in developing countries and in first line therapy so that RA plus chemotherapy currently remain the standard of care (1, 2). Most importantly non-APL acute myeloid leukemia do not respond to RA indicating the need for novel strategies to sensitize AML cells to RA. Here we show that RA-triggered differentiation of APL cells induces endoplasmic reticulum (ER) stress slightly activating the unfolded protein response (UPR). This is sufficient to render leukemic cell lines and human primary blasts very sensitive to doses of ER stress inducing drugs, like tunicamycin (Tm), that are not toxic for the same cells in the absence of RA or for most cell types. Furthermore we observed that low doses of Tm, even in the absence of RA, are sufficient to strongly increase ATO toxicity. Indeed both RA-sensitive and RA-resistant APL cell lines resulted sensitive to Tm-ATO combined treatment at low doses of ATO that are ineffective in the absence of ER stress. The use of inhibitors targeting specific UPR branches indicate that the Protein Kinase RNA-like Endoplasmic Reticulum kinase (PERK) pathway protects differentiating APL cells from ER stress rendering it an interesting therapeutic molecular target. Finally, we extended our observations in a non-APL model, assessing that RA sensitize the non-APL cell line HL60 to ER stress. Altogether our data indicate ER stress as a possible target for designing novel combination therapeutic strategies in AML.
2016
70° Meeting of the Italian Society of Anatomy and Histology
AML; ER stress; RA; ATO
04 Pubblicazione in atti di convegno::04c Atto di convegno in rivista
Retinoic acid sensitizes acute myeloid leukemia cells to ER stress / Masciarelli, Silvia; Capuano, Ernestina; Bellissimo, Teresa; Ottone, T.; Divona, M. D.; Lo Coco, F.; Fazi, Francesco. - In: ITALIAN JOURNAL OF ANATOMY AND EMBRYOLOGY. - ISSN 1122-6714. - STAMPA. - 121:1 (supplement)(2016), pp. 142-142. (Intervento presentato al convegno 70° Meeting of the Italian Society of Anatomy and Histology tenutosi a Rome nel 15-17 September 2016) [10.13128/IJAE-21779].
File allegati a questo prodotto
File Dimensione Formato  
Masciarelli_Retinoic acid_2016.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 382.47 kB
Formato Adobe PDF
382.47 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/925776
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact