This work provides a novel perspective in the field of urban airborne particle investigation that is not currently found in the literature. Four sampling campaigns were performed in the urban area of Rome (Central Italy) during the winter and summer seasons (February and July 2013 and 2014, respectively). The measured concentrations of the regulated 34 elements of As, Cd, Ni and Pb were consistent with those reported by the local Environmental Agency (ARPA Lazio), but non-regulated heavy metals, including Fe, Cu, Cr and Zn, were also found in PM2.5 and analyzed in detail. As an novelty, heavy metals were associated with the host-identified mineral phases, primarily oxides and alloys, and to a lesser extent, other minerals, such as sulfates, carbonates and silicates. Leaching tests of the collected samples were conducted in a buffered solution mimicking the bodily physiological environment. Despite the highest concentration of heavy metals found during the winter sampling period, all of the elements showed a leaching trend leading to major mobility during the summer period. To explain this result, an interesting comparative analysis between the leaching test behavior and innovative mineral allocation was conducted. Both the heavy metal content and mineral allocation in PM2.5 might contribute to the bioavailability of toxic elements in the pulmonary environment. Hence, for regulatory purposes, the non-linear dependency of heavy metal bioavailability on the total metal content should be taken into account.

Content, mineral allocation and leaching behavior of heavy metals in urban PM2.5 / MAZZIOTTI TAGLIANI, Simona; Carnevale, Monica; Armiento, Giovanna; Montereali, Maria Rita; Nardi, Elisa; Inglessis, Marco; Sacco, Fabrizio; Palleschi, Simonetta; Rossi, Barbara; Silvestroni, Leopoldo; Gianfagna, Antonio. - In: ATMOSPHERIC ENVIRONMENT. - ISSN 1352-2310. - ELETTRONICO. - 153:(2017), pp. 47-60. [10.1016/j.atmosenv.2017.01.009]

Content, mineral allocation and leaching behavior of heavy metals in urban PM2.5

MAZZIOTTI TAGLIANI, Simona;SACCO, FABRIZIO;PALLESCHI, SIMONETTA;SILVESTRONI, Leopoldo;GIANFAGNA, Antonio
2017

Abstract

This work provides a novel perspective in the field of urban airborne particle investigation that is not currently found in the literature. Four sampling campaigns were performed in the urban area of Rome (Central Italy) during the winter and summer seasons (February and July 2013 and 2014, respectively). The measured concentrations of the regulated 34 elements of As, Cd, Ni and Pb were consistent with those reported by the local Environmental Agency (ARPA Lazio), but non-regulated heavy metals, including Fe, Cu, Cr and Zn, were also found in PM2.5 and analyzed in detail. As an novelty, heavy metals were associated with the host-identified mineral phases, primarily oxides and alloys, and to a lesser extent, other minerals, such as sulfates, carbonates and silicates. Leaching tests of the collected samples were conducted in a buffered solution mimicking the bodily physiological environment. Despite the highest concentration of heavy metals found during the winter sampling period, all of the elements showed a leaching trend leading to major mobility during the summer period. To explain this result, an interesting comparative analysis between the leaching test behavior and innovative mineral allocation was conducted. Both the heavy metal content and mineral allocation in PM2.5 might contribute to the bioavailability of toxic elements in the pulmonary environment. Hence, for regulatory purposes, the non-linear dependency of heavy metal bioavailability on the total metal content should be taken into account.
2017
PM2.5, heavy metals, bioavailability, mineral allocation, Rome urban area
01 Pubblicazione su rivista::01a Articolo in rivista
Content, mineral allocation and leaching behavior of heavy metals in urban PM2.5 / MAZZIOTTI TAGLIANI, Simona; Carnevale, Monica; Armiento, Giovanna; Montereali, Maria Rita; Nardi, Elisa; Inglessis, Marco; Sacco, Fabrizio; Palleschi, Simonetta; Rossi, Barbara; Silvestroni, Leopoldo; Gianfagna, Antonio. - In: ATMOSPHERIC ENVIRONMENT. - ISSN 1352-2310. - ELETTRONICO. - 153:(2017), pp. 47-60. [10.1016/j.atmosenv.2017.01.009]
File allegati a questo prodotto
File Dimensione Formato  
Tagliani_Content-mineral_2017.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 4.15 MB
Formato Adobe PDF
4.15 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/925204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 33
social impact