Likelihood functions are studied in a probabilistic and possibilistic setting: inferential conclusions are drawn from a set of likelihood functions and prior information relying on the notion of disintegrability. The present study allows for a new interpretation of fuzzy membership functions as coherent conditional possibilities. The concept of possibility of a fuzzy event is then introduced and a comparison with the probability of a fuzzy event is provided.

Fuzzy memberships as likelihood functions in a possibilistic framework / Coletti, Giulianella; Petturiti, Davide; Vantaggi, Barbara. - In: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING. - ISSN 0888-613X. - 88:(2017), pp. 547-566. [10.1016/j.ijar.2016.11.017]

Fuzzy memberships as likelihood functions in a possibilistic framework

VANTAGGI, Barbara
2017

Abstract

Likelihood functions are studied in a probabilistic and possibilistic setting: inferential conclusions are drawn from a set of likelihood functions and prior information relying on the notion of disintegrability. The present study allows for a new interpretation of fuzzy membership functions as coherent conditional possibilities. The concept of possibility of a fuzzy event is then introduced and a comparison with the probability of a fuzzy event is provided.
2017
Conditional possibility; Conditional probability; Fuzzy set; Inference; Likelihood function
01 Pubblicazione su rivista::01a Articolo in rivista
Fuzzy memberships as likelihood functions in a possibilistic framework / Coletti, Giulianella; Petturiti, Davide; Vantaggi, Barbara. - In: INTERNATIONAL JOURNAL OF APPROXIMATE REASONING. - ISSN 0888-613X. - 88:(2017), pp. 547-566. [10.1016/j.ijar.2016.11.017]
File allegati a questo prodotto
File Dimensione Formato  
Vantaggi_Fuzzy-memberships_2017.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 652.76 kB
Formato Adobe PDF
652.76 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/924537
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 16
social impact