We consider a quantum mechanical three-particle system made of two identical fermions of mass one and a different particle of mass m, where each fermion interacts via a zero-range force with the different particle. In particular we study the unitary regime, i.e., the case of infinite two-body scattering length. The Hamiltonians describing the system are, by definition, self-adjoint extensions of the free Hamiltonian restricted on smooth functions vanishing at the two-body coincidence planes, i.e., where the positions of two interacting particles coincide. It is known that for m larger than a critical value m∗ ≃ (13.607)−1 a self-adjoint and lower bounded Hamiltonian H0 can be constructed, whose domain is characterized in terms of the standard point-interaction boundary condition at each coincidence plane. Here we prove that for m ∈ (m∗,m∗∗), where m∗∗ ≃ (8.62)−1, there is a further family of self-adjoint and lower bounded Hamiltonians H0,β , β ∈ R, describing the system. Using a quadratic form method, we give a rigorous construction of such Hamiltonians and we show that the elements of their domains satisfy a further boundary condition, characterizing the singular behavior when the positions of all the three particles coincide.
A Class of Hamiltonians for a Three-Particle Fermionic System at Unitarity / Correggi, Michele; Dell'Antonio, Gianfausto; Finco, D.; Michelangeli, A.; Teta, Alessandro. - In: MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY. - ISSN 1385-0172. - STAMPA. - 18:1(2015), pp. 1-36. [10.1007/s11040-015-9195-4]
A Class of Hamiltonians for a Three-Particle Fermionic System at Unitarity
CORREGGI, MICHELE;DELL'ANTONIO, Gianfausto;TETA, Alessandro
2015
Abstract
We consider a quantum mechanical three-particle system made of two identical fermions of mass one and a different particle of mass m, where each fermion interacts via a zero-range force with the different particle. In particular we study the unitary regime, i.e., the case of infinite two-body scattering length. The Hamiltonians describing the system are, by definition, self-adjoint extensions of the free Hamiltonian restricted on smooth functions vanishing at the two-body coincidence planes, i.e., where the positions of two interacting particles coincide. It is known that for m larger than a critical value m∗ ≃ (13.607)−1 a self-adjoint and lower bounded Hamiltonian H0 can be constructed, whose domain is characterized in terms of the standard point-interaction boundary condition at each coincidence plane. Here we prove that for m ∈ (m∗,m∗∗), where m∗∗ ≃ (8.62)−1, there is a further family of self-adjoint and lower bounded Hamiltonians H0,β , β ∈ R, describing the system. Using a quadratic form method, we give a rigorous construction of such Hamiltonians and we show that the elements of their domains satisfy a further boundary condition, characterizing the singular behavior when the positions of all the three particles coincide.File | Dimensione | Formato | |
---|---|---|---|
Correggi_A- class-of-Hamiltonians_2015.pdf
solo gestori archivio
Note: Articolo principale
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
591.72 kB
Formato
Adobe PDF
|
591.72 kB | Adobe PDF | Contatta l'autore |
Correggi_postprint_A- class-of-Hamiltonians_2015.pdf
accesso aperto
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Creative commons
Dimensione
431.31 kB
Formato
Adobe PDF
|
431.31 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.