We propose a numerical method for stationary Mean Field Games defined on a network. In this framework a correct approximation of the transition conditions at the vertices plays a crucial role. We prove existence, uniqueness and convergence of the scheme and we also propose a least squares method for the solution of the discrete system. Numerical experiments are carried out.

A numerical method for mean field games on networks / Cacace, Simone; Camilli, Fabio; Marchi, Claudio. - In: MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE. - ISSN 0764-583X. - STAMPA. - 51:1(2017), pp. 63-88. [10.1051/m2an/2016015]

A numerical method for mean field games on networks

CACACE, SIMONE;CAMILLI, FABIO;
2017

Abstract

We propose a numerical method for stationary Mean Field Games defined on a network. In this framework a correct approximation of the transition conditions at the vertices plays a crucial role. We prove existence, uniqueness and convergence of the scheme and we also propose a least squares method for the solution of the discrete system. Numerical experiments are carried out.
2017
Convergence; Finite difference schemes; Mean field games; Networks; Analysis; Numerical Analysis; Modeling and Simulation; Applied Mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
A numerical method for mean field games on networks / Cacace, Simone; Camilli, Fabio; Marchi, Claudio. - In: MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE. - ISSN 0764-583X. - STAMPA. - 51:1(2017), pp. 63-88. [10.1051/m2an/2016015]
File allegati a questo prodotto
File Dimensione Formato  
M2AN_3.pdf

accesso aperto

Note: M2AN_3.pdf
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.23 MB
Formato Adobe PDF
1.23 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/924204
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact