In this paper we focus on the spatial nature of visual domain shift, attempting to learn where domain adaptation originates in each given image of the source and target set. We borrow concepts and techniques from the CNN visualization literature, and learn domainness maps able to localize the degree of domain specificity in images.We derive from these maps features related to different domainness levels, and we show that by considering them as a preprocessing step for a domain adaptation algorithm, the final classification performance is strongly improved. Combined with the whole image representation, these features provide state of the art results on the Office dataset. © Springer International Publishing Switzerland 2016.
Learning the roots of visual domain shift / Tommasi, Tatiana; Lanzi, Martina; Russo, Paolo; Caputo, Barbara. - 9915:(2016), pp. 475-482. (Intervento presentato al convegno 14th European Conference on Computer Vision, ECCV 2016 tenutosi a Amsterdam; Netherlands) [10.1007/978-3-319-49409-8_39].
Learning the roots of visual domain shift
TOMMASI, TATIANA
;RUSSO, PAOLO;CAPUTO, BARBARA
2016
Abstract
In this paper we focus on the spatial nature of visual domain shift, attempting to learn where domain adaptation originates in each given image of the source and target set. We borrow concepts and techniques from the CNN visualization literature, and learn domainness maps able to localize the degree of domain specificity in images.We derive from these maps features related to different domainness levels, and we show that by considering them as a preprocessing step for a domain adaptation algorithm, the final classification performance is strongly improved. Combined with the whole image representation, these features provide state of the art results on the Office dataset. © Springer International Publishing Switzerland 2016.File | Dimensione | Formato | |
---|---|---|---|
Tommasi_Postprint_Learning-The-Roots_2016.pdf
accesso aperto
Note: https://link.springer.com/chapter/10.1007/978-3-319-49409-8_39
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.42 MB
Formato
Adobe PDF
|
3.42 MB | Adobe PDF | |
Tommasi_Learning-The-Roots_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
3.49 MB
Formato
Adobe PDF
|
3.49 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.