We present a benchmark of several existing multi-source adaptive methods on the largest publicly available database of surface electromyography signals for polyarticulated self-powered hand prostheses. By exploiting the information collected over numerous subjects, these methods allow to reduce significantly the training time needed by any new prosthesis user. Our findings provide the bio robotics community with a deeper understanding of adaptive learning solutions for user-machine control and pave the way for further improvements in hand-prosthetics. © 2014 IEEE.

Multi-source adaptive learning for fast control of prosthetics hand / Patricia, Novi; Tommasi, Tatiana; Caputo, Barbara. - (2014), pp. 2769-2774. (Intervento presentato al convegno 22nd International Conference on Pattern Recognition, ICPR 2014 tenutosi a Stockholm; Sweden nel 2014) [10.1109/ICPR.2014.477].

Multi-source adaptive learning for fast control of prosthetics hand

Patricia, Novi;Tommasi, Tatiana
;
Caputo, Barbara
2014

Abstract

We present a benchmark of several existing multi-source adaptive methods on the largest publicly available database of surface electromyography signals for polyarticulated self-powered hand prostheses. By exploiting the information collected over numerous subjects, these methods allow to reduce significantly the training time needed by any new prosthesis user. Our findings provide the bio robotics community with a deeper understanding of adaptive learning solutions for user-machine control and pave the way for further improvements in hand-prosthetics. © 2014 IEEE.
2014
22nd International Conference on Pattern Recognition, ICPR 2014
Adaptive learning; Adaptive methods; Hand prosthesis
Pubblicazione in atti di convegno::04b Atto di convegno in volume
Multi-source adaptive learning for fast control of prosthetics hand / Patricia, Novi; Tommasi, Tatiana; Caputo, Barbara. - (2014), pp. 2769-2774. (Intervento presentato al convegno 22nd International Conference on Pattern Recognition, ICPR 2014 tenutosi a Stockholm; Sweden nel 2014) [10.1109/ICPR.2014.477].
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/924129
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 41
  • ???jsp.display-item.citation.isi??? 31
social impact