In this paper, we study the problem −∆u =„2+α 2 «2|x|αf(λ,u), in B1, u>0, in B1, u =0 , on ∂B1, (P) where B1 is the unit ball of R2, f is a smooth nonlinearity and α, λ are real numbers with α>0. From a careful study of the linearized operator, we compute the Morse index of some radial solutions to (P). Moreover, using the bifurcation theory, we prove the existence of branches of nonradial solutions for suitable values of the positive parameter λ. The casef(λ,u)=λeu provides more detailed informations.
Symmetry breaking and Morse index of solutions of nonlinear elliptic problems in the plane / Gladiali, Francesca; Grossi, Massimo; Neves, Sérgio L. N.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. - 18:5(2016), p. 1550087. [10.1142/S021919971550087X]
Symmetry breaking and Morse index of solutions of nonlinear elliptic problems in the plane
GROSSI, Massimo;
2016
Abstract
In this paper, we study the problem −∆u =„2+α 2 «2|x|αf(λ,u), in B1, u>0, in B1, u =0 , on ∂B1, (P) where B1 is the unit ball of R2, f is a smooth nonlinearity and α, λ are real numbers with α>0. From a careful study of the linearized operator, we compute the Morse index of some radial solutions to (P). Moreover, using the bifurcation theory, we prove the existence of branches of nonradial solutions for suitable values of the positive parameter λ. The casef(λ,u)=λeu provides more detailed informations.File | Dimensione | Formato | |
---|---|---|---|
Gladiali_Symmetry-breaking_2016.pdf
solo gestori archivio
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
552.09 kB
Formato
Adobe PDF
|
552.09 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.