In this paper, we study the problem −∆u =„2+α 2 «2|x|αf(λ,u), in B1, u>0, in B1, u =0 , on ∂B1, (P) where B1 is the unit ball of R2, f is a smooth nonlinearity and α, λ are real numbers with α>0. From a careful study of the linearized operator, we compute the Morse index of some radial solutions to (P). Moreover, using the bifurcation theory, we prove the existence of branches of nonradial solutions for suitable values of the positive parameter λ. The casef(λ,u)=λeu provides more detailed informations.

Symmetry breaking and Morse index of solutions of nonlinear elliptic problems in the plane / Gladiali, Francesca; Grossi, Massimo; Neves, Sérgio L. N.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. - 18:5(2016), p. 1550087. [10.1142/S021919971550087X]

Symmetry breaking and Morse index of solutions of nonlinear elliptic problems in the plane

GROSSI, Massimo;
2016

Abstract

In this paper, we study the problem −∆u =„2+α 2 «2|x|αf(λ,u), in B1, u>0, in B1, u =0 , on ∂B1, (P) where B1 is the unit ball of R2, f is a smooth nonlinearity and α, λ are real numbers with α>0. From a careful study of the linearized operator, we compute the Morse index of some radial solutions to (P). Moreover, using the bifurcation theory, we prove the existence of branches of nonradial solutions for suitable values of the positive parameter λ. The casef(λ,u)=λeu provides more detailed informations.
2016
Bifurcation theory; morse index; nonradial solutions; mathematics (all); applied mathematics
01 Pubblicazione su rivista::01a Articolo in rivista
Symmetry breaking and Morse index of solutions of nonlinear elliptic problems in the plane / Gladiali, Francesca; Grossi, Massimo; Neves, Sérgio L. N.. - In: COMMUNICATIONS IN CONTEMPORARY MATHEMATICS. - ISSN 0219-1997. - STAMPA. - 18:5(2016), p. 1550087. [10.1142/S021919971550087X]
File allegati a questo prodotto
File Dimensione Formato  
Gladiali_Symmetry-breaking_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 552.09 kB
Formato Adobe PDF
552.09 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/924113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 14
social impact