The present doctoral thesis is the result of the work carried out during the three years of my PhD scholarship at the Rome Center for Molecular Design laboratory (RCMD, Department of Chemistry and Drug Technologies, Sapienza University of Rome), under the supervision of Prof. Rino Ragno. The research activity was focused mainly on the design, optimization and application of computational strategies to derive quantitative structure-activity relationships (QSAR, 3-D QSAR, and COMBINE) on different molecular classes of current interest, such as: opioid receptor antagonists (OPAs), Hepatitis C Virus NS5B-Polymerase Inhibitors (NS5B-NNIs), Hystone Deacetylase Inhibitors (HDACIs), Anti- tubercular agents, vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors, HSP90 inhibitors, HIV-1 reverse transcriptase inhibitors (NNRTIs), Bovine Serum Amine Oxidase (BSAO) substrates, etc... Moreover two research periods abroad were performed: the first framed in a LLP Erasmus program collaboration, was conducted for six months at the Laboratoire d'Ingénierie et Moléculaire Pharmacologique Biochimie (LIMBP) of the Université de Lorraine Metz (France), directed by Prof. Gilbert Kirsch, and characterized by the application of organic synthesis to obtain new thienopyrimidinone derivatives as potential inhibitors of vascular endothelial growth factor receptor-2 (VEGFR-2); the second took place, for three months, at the Department of Biochemistry and Molecular Biophysics in Washington University School of Medicine in Saint Louis (MO, USA), under the supervision of Prof. Garland R. Marshall, investigating the activity profile of new Histone Deacetylases (HDACs) inhibitors by the application of the Mobility Shift Assay Technology. Main purpose of this doctoral thesis is to highlight the activities carried out in the different research projects, the applied methodologies and the obtained results. The text starts describing those studies whose results were published in scientific journals (chapters I-VI): the author decided to omit some procedural details, completely reported in the published papers, that would make the text too long, tedious and redundant; therefore readers who want to delve these aspects can also refer to Chapter XII in which is possible to read the original papers; on the contrary for studies that have not yet been published, as those characterizing the Chapters VII and VIII, discussion is adequately detailed. Chapters IX and X report the scientific activities carried out in France and in USA respectively; Chapter XI summarizes all the scientific activities accomplished during the entire PhD course, whereas Chapter XII, as mentioned, contains the published articles.
Application of Medicinal Chemistry Methods on Different Classes of Drugs / Ballante, Flavio. - (2014 Jan 27).
Application of Medicinal Chemistry Methods on Different Classes of Drugs
BALLANTE, FLAVIO
27/01/2014
Abstract
The present doctoral thesis is the result of the work carried out during the three years of my PhD scholarship at the Rome Center for Molecular Design laboratory (RCMD, Department of Chemistry and Drug Technologies, Sapienza University of Rome), under the supervision of Prof. Rino Ragno. The research activity was focused mainly on the design, optimization and application of computational strategies to derive quantitative structure-activity relationships (QSAR, 3-D QSAR, and COMBINE) on different molecular classes of current interest, such as: opioid receptor antagonists (OPAs), Hepatitis C Virus NS5B-Polymerase Inhibitors (NS5B-NNIs), Hystone Deacetylase Inhibitors (HDACIs), Anti- tubercular agents, vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitors, HSP90 inhibitors, HIV-1 reverse transcriptase inhibitors (NNRTIs), Bovine Serum Amine Oxidase (BSAO) substrates, etc... Moreover two research periods abroad were performed: the first framed in a LLP Erasmus program collaboration, was conducted for six months at the Laboratoire d'Ingénierie et Moléculaire Pharmacologique Biochimie (LIMBP) of the Université de Lorraine Metz (France), directed by Prof. Gilbert Kirsch, and characterized by the application of organic synthesis to obtain new thienopyrimidinone derivatives as potential inhibitors of vascular endothelial growth factor receptor-2 (VEGFR-2); the second took place, for three months, at the Department of Biochemistry and Molecular Biophysics in Washington University School of Medicine in Saint Louis (MO, USA), under the supervision of Prof. Garland R. Marshall, investigating the activity profile of new Histone Deacetylases (HDACs) inhibitors by the application of the Mobility Shift Assay Technology. Main purpose of this doctoral thesis is to highlight the activities carried out in the different research projects, the applied methodologies and the obtained results. The text starts describing those studies whose results were published in scientific journals (chapters I-VI): the author decided to omit some procedural details, completely reported in the published papers, that would make the text too long, tedious and redundant; therefore readers who want to delve these aspects can also refer to Chapter XII in which is possible to read the original papers; on the contrary for studies that have not yet been published, as those characterizing the Chapters VII and VIII, discussion is adequately detailed. Chapters IX and X report the scientific activities carried out in France and in USA respectively; Chapter XI summarizes all the scientific activities accomplished during the entire PhD course, whereas Chapter XII, as mentioned, contains the published articles.File | Dimensione | Formato | |
---|---|---|---|
Flavio_Ballante_PhD_Thesis.pdf
accesso aperto
Note: Tesi di Dottorato Flavio Ballante
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
37.31 MB
Formato
Adobe PDF
|
37.31 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.