I explain a way to compute Fourier coefficients of modular forms associated to normalizer of non-split Cartan subgroups of GL(2,Z/pZ) and how, using these coefficients, one can compute explicit equations of modular curves associated to same subgroup. I attached some tables containing some examples of results of this method.
Rational Points on Modular Curves / Mercuri, Pietro. - (2014 Jun 17).
Rational Points on Modular Curves
MERCURI, PIETRO
17/06/2014
Abstract
I explain a way to compute Fourier coefficients of modular forms associated to normalizer of non-split Cartan subgroups of GL(2,Z/pZ) and how, using these coefficients, one can compute explicit equations of modular curves associated to same subgroup. I attached some tables containing some examples of results of this method.File allegati a questo prodotto
File | Dimensione | Formato | |
---|---|---|---|
Mercuri Pietro - Rational Points on Modular Curves (tesi).pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
431.02 kB
Formato
Adobe PDF
|
431.02 kB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.