ABSTRACT 1 Background. With recognition of disease-causing genes in arrhythmogenic right ventricular cardiomyopathy, mutation analysis is being applied. Methods and Results. The role of genotyping in familial assessment for arrhythmogenic right ventricular cardiomyopathy was investigated, including the prevalence of mutations in known causal genes, the penetrance and expressivity in genotyped families, and the utility of the 2010 Task Force criteria in clinical diagnosis. Clinical and molecular genetic evaluation was performed in 210 first-degree and 45 second-degree relatives from 100 families. In 51 families, the proband was deceased. The living probands had a high prevalence of ECG abnormalities (89%) and ventricular arrhythmia (78%) and evidence of more severe disease than relatives. Definite or probable causal mutations were found in 58% of families and 73% of living probands, of whom 28% had an additional desmosomal variant (ie, mutation or polymorphism). Ninety-three relatives had a causal mutation; 33% fulfilled the 2010 criteria, whereas only 19% satisfied the 1994 version (P=0.03). An additional desmosomal gene variant was found in 10% and was associated with a 5-fold increased risk of developing penetrant disease (odds ratio, 4.7; 95% confidence interval, 1.1 to 20.4; P=0.04). Conclusions. Arrhythmogenic right ventricular cardiomyopathy is a genetically complex disease characterized by marked intrafamilial phenotype diversity. Penetrance is definition dependent and is greater with the 2010 criteria compared with the 1994 criteria. Relatives harboring >1 genetic variant had significantly increased risk of developing clinical disease, potentially an important determinant of the phenotypic heterogeneity seen within families with arrhythmogenic right ventricular cardiomyopathy. ABSTRACT 2 Aims. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease predominantly caused by mutations in desmosomal protein genes. Lamin A/C gene (LMNA) mutations are associated with dilated cardiomyopathy, conduction abnormalities and high incidence of sudden cardiac death. In this study we screened a large cohort of ARVC patients for LMNA mutations. Methods and Results. One hundred and eight patients from unrelated families with borderline (n= 27) or definite (n= 81) diagnosis of ARVC were genetically tested for five desmosomal genes and LMNA. Sixty-one (56.5 %) were positive for desmosomal gene mutations. Standard polymerase chain reaction (PCR) amplification of the 12 protein-coding LMNA exons was performed and mutational screening performed by direct sequencing. Four patients (4%) without desmosomal gene mutations carried LMNA variants. Three had severe RV involvement, and during follow-up three died (two suddenly and one from congestive heart failure); all three had conduction abnormalities on resting 12 lead ECG. Myocardial tissue from two patients showed myocyte loss and fibro-fatty replacement. In one of these, immunohistochemical staining with antibody to plakoglobin showed reduced/absent staining of the intercalated discs in the myocardium. Conclusion. LMNA mutations can be found in severe forms of ARVC. LMNA should be added to desmosomal genes when genetically testing patients with suspected ARVC, particularly when they also have ECG evidence for conduction disease.

CORRELAZIONE GENOTIPO-FENOTIPO NELLA CARDIOMIOPATIA ARITMOGENA DEL VENTRICOLO DESTRO / Quarta, Giovanni. - (2011).

CORRELAZIONE GENOTIPO-FENOTIPO NELLA CARDIOMIOPATIA ARITMOGENA DEL VENTRICOLO DESTRO

QUARTA, GIOVANNI
01/01/2011

Abstract

ABSTRACT 1 Background. With recognition of disease-causing genes in arrhythmogenic right ventricular cardiomyopathy, mutation analysis is being applied. Methods and Results. The role of genotyping in familial assessment for arrhythmogenic right ventricular cardiomyopathy was investigated, including the prevalence of mutations in known causal genes, the penetrance and expressivity in genotyped families, and the utility of the 2010 Task Force criteria in clinical diagnosis. Clinical and molecular genetic evaluation was performed in 210 first-degree and 45 second-degree relatives from 100 families. In 51 families, the proband was deceased. The living probands had a high prevalence of ECG abnormalities (89%) and ventricular arrhythmia (78%) and evidence of more severe disease than relatives. Definite or probable causal mutations were found in 58% of families and 73% of living probands, of whom 28% had an additional desmosomal variant (ie, mutation or polymorphism). Ninety-three relatives had a causal mutation; 33% fulfilled the 2010 criteria, whereas only 19% satisfied the 1994 version (P=0.03). An additional desmosomal gene variant was found in 10% and was associated with a 5-fold increased risk of developing penetrant disease (odds ratio, 4.7; 95% confidence interval, 1.1 to 20.4; P=0.04). Conclusions. Arrhythmogenic right ventricular cardiomyopathy is a genetically complex disease characterized by marked intrafamilial phenotype diversity. Penetrance is definition dependent and is greater with the 2010 criteria compared with the 1994 criteria. Relatives harboring >1 genetic variant had significantly increased risk of developing clinical disease, potentially an important determinant of the phenotypic heterogeneity seen within families with arrhythmogenic right ventricular cardiomyopathy. ABSTRACT 2 Aims. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited heart muscle disease predominantly caused by mutations in desmosomal protein genes. Lamin A/C gene (LMNA) mutations are associated with dilated cardiomyopathy, conduction abnormalities and high incidence of sudden cardiac death. In this study we screened a large cohort of ARVC patients for LMNA mutations. Methods and Results. One hundred and eight patients from unrelated families with borderline (n= 27) or definite (n= 81) diagnosis of ARVC were genetically tested for five desmosomal genes and LMNA. Sixty-one (56.5 %) were positive for desmosomal gene mutations. Standard polymerase chain reaction (PCR) amplification of the 12 protein-coding LMNA exons was performed and mutational screening performed by direct sequencing. Four patients (4%) without desmosomal gene mutations carried LMNA variants. Three had severe RV involvement, and during follow-up three died (two suddenly and one from congestive heart failure); all three had conduction abnormalities on resting 12 lead ECG. Myocardial tissue from two patients showed myocyte loss and fibro-fatty replacement. In one of these, immunohistochemical staining with antibody to plakoglobin showed reduced/absent staining of the intercalated discs in the myocardium. Conclusion. LMNA mutations can be found in severe forms of ARVC. LMNA should be added to desmosomal genes when genetically testing patients with suspected ARVC, particularly when they also have ECG evidence for conduction disease.
2011
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/918115
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact