In this dissertation we discuss the deployment of combinatorial optimization methods for modeling and solve real life problemS, with a particular emphasis to two biological problems arising from a common scenario: the reconstruction of the three-dimensional shape of a biological molecule from Nuclear Magnetic Resonance (NMR) data. The fi rst topic is the 3D assignment pathway problem (APP) for a RNA molecule. We prove that APP is NP-hard, and show a formulation of it based on edge-colored graphs. Taking into account that interactions between consecutive nuclei in the NMR spectrum are diff erent according to the type of residue along the RNA chain, each color in the graph represents a type of interaction. Thus, we can represent the sequence of interactions as the problem of fi nding a longest (hamiltonian) path whose edges follow a given order of colors (i.e., the orderly colored longest path). We introduce three alternative IP formulations of APP obtained with a max flow problem on a directed graph with packing constraints over the partitions, which have been compared among themselves. Since the last two models work on cyclic graphs, for them we proposed an algorithm based on the solution of their relaxation combined with the separation of cycle inequalities in a Branch & Cut scheme. The second topic is the discretizable distance geometry problem (DDGP), which is a formulation on discrete search space of the well-known distance geometry problem (DGP). The DGP consists in seeking the embedding in the space of a undirected graph, given a set of Euclidean distances between certain pairs of vertices. DGP has two important applications: (i) fi nding the three dimensional conformation of a molecule from a subset of interatomic distances, called Molecular Distance Geometry Problem, and (ii) the Sensor Network Localization Problem. We describe a Branch & Prune (BP) algorithm tailored for this problem, and two versions of it solving the DDGP both in protein modeling and in sensor networks localization frameworks. BP is an exact and exhaustive combinatorial algorithm that examines all the valid embeddings of a given weighted graph G=(V,E,d), under the hypothesis of existence of a given order on V. By comparing the two version of BP to well-known algorithms we are able to prove the e fficiency of BP in both contexts, provided that the order imposed on V is maintained.

Operations research: from computational biology to sensor network / DE COLA, Maria. - (2013 Nov 18).

Operations research: from computational biology to sensor network

DE COLA, MARIA
18/11/2013

Abstract

In this dissertation we discuss the deployment of combinatorial optimization methods for modeling and solve real life problemS, with a particular emphasis to two biological problems arising from a common scenario: the reconstruction of the three-dimensional shape of a biological molecule from Nuclear Magnetic Resonance (NMR) data. The fi rst topic is the 3D assignment pathway problem (APP) for a RNA molecule. We prove that APP is NP-hard, and show a formulation of it based on edge-colored graphs. Taking into account that interactions between consecutive nuclei in the NMR spectrum are diff erent according to the type of residue along the RNA chain, each color in the graph represents a type of interaction. Thus, we can represent the sequence of interactions as the problem of fi nding a longest (hamiltonian) path whose edges follow a given order of colors (i.e., the orderly colored longest path). We introduce three alternative IP formulations of APP obtained with a max flow problem on a directed graph with packing constraints over the partitions, which have been compared among themselves. Since the last two models work on cyclic graphs, for them we proposed an algorithm based on the solution of their relaxation combined with the separation of cycle inequalities in a Branch & Cut scheme. The second topic is the discretizable distance geometry problem (DDGP), which is a formulation on discrete search space of the well-known distance geometry problem (DGP). The DGP consists in seeking the embedding in the space of a undirected graph, given a set of Euclidean distances between certain pairs of vertices. DGP has two important applications: (i) fi nding the three dimensional conformation of a molecule from a subset of interatomic distances, called Molecular Distance Geometry Problem, and (ii) the Sensor Network Localization Problem. We describe a Branch & Prune (BP) algorithm tailored for this problem, and two versions of it solving the DDGP both in protein modeling and in sensor networks localization frameworks. BP is an exact and exhaustive combinatorial algorithm that examines all the valid embeddings of a given weighted graph G=(V,E,d), under the hypothesis of existence of a given order on V. By comparing the two version of BP to well-known algorithms we are able to prove the e fficiency of BP in both contexts, provided that the order imposed on V is maintained.
18-nov-2013
File allegati a questo prodotto
File Dimensione Formato  
PhDThesis-DeCola.pdf

accesso aperto

Tipologia: Tesi di dottorato
Licenza: Creative commons
Dimensione 3.28 MB
Formato Adobe PDF
3.28 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/917851
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact