SiSeRHMap is a computerized methodology capable of drawing up prediction maps of seismic response. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches 5 and models are organized in a code-architecture composed of five interdependent modules. A GIS (Geographic Information System) Cubic Model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A metamodeling process confers a hybrid nature to the methodology. In this process, the one-dimensional linear 10 equivalent analysis produces acceleration response spectra of shear wave velocitythickness profiles, defined as trainers, which are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated Evolutionary Algorithm (EA) and the Levenberg–Marquardt Algorithm (LMA) as the final optimizer. In the fi15 nal step, the GCM Maps Executor module produces a serial map-set of a stratigraphic seismic response at different periods, grid-solving the calibrated Spectra model. In addition, the spectra topographic amplification is also computed by means of a numerical prediction model. This latter is built to match the results of the numerical simulations related to isolate reliefs using GIS topographic attributes. In this way, different sets 20 of seismic response maps are developed, on which, also maps of seismic design response spectra are defined by means of an enveloping technique.
SiSeRHMap v1.0: A simulator for mapped seismic response using a hybrid model / Grelle, Gerardo; Bonito, Laura; Lampasi, Alessandro; Revellino, Paola; Guerriero, Luigi; Sappa, Giuseppe; Guadagno, Francesco Maria. - In: GEOSCIENTIFIC MODEL DEVELOPMENT. - ISSN 1991-959X. - 9:4(2016), pp. 1567-1596. [10.5194/gmd-9-1567-2016]
SiSeRHMap v1.0: A simulator for mapped seismic response using a hybrid model
GRELLE, GERARDO
Primo
Methodology
;SAPPA, Giuseppe;
2016
Abstract
SiSeRHMap is a computerized methodology capable of drawing up prediction maps of seismic response. It was realized on the basis of a hybrid model which combines different approaches and models in a new and non-conventional way. These approaches 5 and models are organized in a code-architecture composed of five interdependent modules. A GIS (Geographic Information System) Cubic Model (GCM), which is a layered computational structure based on the concept of lithodynamic units and zones, aims at reproducing a parameterized layered subsoil model. A metamodeling process confers a hybrid nature to the methodology. In this process, the one-dimensional linear 10 equivalent analysis produces acceleration response spectra of shear wave velocitythickness profiles, defined as trainers, which are randomly selected in each zone. Subsequently, a numerical adaptive simulation model (Spectra) is optimized on the above trainer acceleration response spectra by means of a dedicated Evolutionary Algorithm (EA) and the Levenberg–Marquardt Algorithm (LMA) as the final optimizer. In the fi15 nal step, the GCM Maps Executor module produces a serial map-set of a stratigraphic seismic response at different periods, grid-solving the calibrated Spectra model. In addition, the spectra topographic amplification is also computed by means of a numerical prediction model. This latter is built to match the results of the numerical simulations related to isolate reliefs using GIS topographic attributes. In this way, different sets 20 of seismic response maps are developed, on which, also maps of seismic design response spectra are defined by means of an enveloping technique.File | Dimensione | Formato | |
---|---|---|---|
Grelle_SiSeRHMap v1.0_2016.pdf
accesso aperto
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Creative commons
Dimensione
3.63 MB
Formato
Adobe PDF
|
3.63 MB | Adobe PDF |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.