We study a Venttsel' problem in a three dimensional fractal domain for an operator in non divergence form. We prove existence, uniqueness and regularity results of the strict solution for both the fractal and prefractal problem, via a semigroup approach. In view of numerical approximations, we study the asymptotic behaviour of the solutions of the prefractal problems and we prove that the prefractal solutions converge in the Mosco-Kuwae-Shioya sense to the (limit) solution of the fractal one.

Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains / Vernole, Paola; Durante, Valerio Regis; Lancia, Maria Rosaria. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - STAMPA. - 9:5(2016), pp. 1493-1520. [10.3934/dcdss.2016060]

Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains

VERNOLE, Paola;LANCIA, Maria Rosaria
2016

Abstract

We study a Venttsel' problem in a three dimensional fractal domain for an operator in non divergence form. We prove existence, uniqueness and regularity results of the strict solution for both the fractal and prefractal problem, via a semigroup approach. In view of numerical approximations, we study the asymptotic behaviour of the solutions of the prefractal problems and we prove that the prefractal solutions converge in the Mosco-Kuwae-Shioya sense to the (limit) solution of the fractal one.
2016
Venttsel problems, Nonsymmetric operators, non divergence operator, fractal surfaces, asymptotic behaviour
01 Pubblicazione su rivista::01a Articolo in rivista
Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains / Vernole, Paola; Durante, Valerio Regis; Lancia, Maria Rosaria. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - STAMPA. - 9:5(2016), pp. 1493-1520. [10.3934/dcdss.2016060]
File allegati a questo prodotto
File Dimensione Formato  
DCDS2016.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 959.92 kB
Formato Adobe PDF
959.92 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/912902
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact