We study a Venttsel' problem in a three dimensional fractal domain for an operator in non divergence form. We prove existence, uniqueness and regularity results of the strict solution for both the fractal and prefractal problem, via a semigroup approach. In view of numerical approximations, we study the asymptotic behaviour of the solutions of the prefractal problems and we prove that the prefractal solutions converge in the Mosco-Kuwae-Shioya sense to the (limit) solution of the fractal one.
Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains / Vernole, Paola; Durante, Valerio Regis; Lancia, Maria Rosaria. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - STAMPA. - 9:5(2016), pp. 1493-1520. [10.3934/dcdss.2016060]
Asymptotics for Venttsel' problems for operators in non divergence form in irregular domains
VERNOLE, Paola;LANCIA, Maria Rosaria
2016
Abstract
We study a Venttsel' problem in a three dimensional fractal domain for an operator in non divergence form. We prove existence, uniqueness and regularity results of the strict solution for both the fractal and prefractal problem, via a semigroup approach. In view of numerical approximations, we study the asymptotic behaviour of the solutions of the prefractal problems and we prove that the prefractal solutions converge in the Mosco-Kuwae-Shioya sense to the (limit) solution of the fractal one.File | Dimensione | Formato | |
---|---|---|---|
DCDS2016.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
959.92 kB
Formato
Adobe PDF
|
959.92 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.