This paper presents a methodology for partitioning two modes (objects and occasions) of three-way dissimilarity data based on the statistical modeling approach of fitting an expected clustering model, expressed in terms of dissimilarities and specified by a classification matrix, to the observed three-way two-mode data. Specifically, occasions are partitioned into homogeneous classes of dissimilarity matrices, and, within each class, a classification matrix, specifying a consensus partition of the objects, is identified. The parameters of the model are estimated in a least-squares fitting context and an efficient coordinate descent algorithm is given.

Partitioning three-way dissimilarity data / Bocci, Laura; Vichi, Maurizio. - ELETTRONICO. - (2011), pp. ---. (Intervento presentato al convegno CLADAG 2011. 8th Scientific Meeting of the CLAssification and Data Analysis Group of the Italian Statistical Society tenutosi a Pavia nel 7-9 settembre 2011).

Partitioning three-way dissimilarity data

BOCCI, Laura;VICHI, Maurizio
2011

Abstract

This paper presents a methodology for partitioning two modes (objects and occasions) of three-way dissimilarity data based on the statistical modeling approach of fitting an expected clustering model, expressed in terms of dissimilarities and specified by a classification matrix, to the observed three-way two-mode data. Specifically, occasions are partitioned into homogeneous classes of dissimilarity matrices, and, within each class, a classification matrix, specifying a consensus partition of the objects, is identified. The parameters of the model are estimated in a least-squares fitting context and an efficient coordinate descent algorithm is given.
2011
CLADAG 2011. 8th Scientific Meeting of the CLAssification and Data Analysis Group of the Italian Statistical Society
Three-way dissimilarity data, model-based classification approach, classification matrix
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Partitioning three-way dissimilarity data / Bocci, Laura; Vichi, Maurizio. - ELETTRONICO. - (2011), pp. ---. (Intervento presentato al convegno CLADAG 2011. 8th Scientific Meeting of the CLAssification and Data Analysis Group of the Italian Statistical Society tenutosi a Pavia nel 7-9 settembre 2011).
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/910318
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact