We present a flow analysis of a wave-energy air turbine, commonly known as Wells turbine. The focus here is on the computational method used in the analysis, based on the Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) stabilizations and the Discontinuity-Capturing Directional Dissipation (DCDD). The SUPG/PSPG stabilization is used rather widely and successfully. The DCDD, first introduced to complement the SUPG/PSPG method in computations of incompressible flows in the presence of sharp solution gradients, was also shown to perform well in standard turbulent-flow test computations when compared to the Smagorinsky Large Eddy Simulation (LES) model. The results obtained in our computational analysis of the Wells turbine here compare favorably to the available experimental data, and this demonstrates that the DCDD method performs well also in turbomachinery flows.

Flow analysis of a wave-energy air turbine with the SUPG/PSPG stabilization and discontinuity-capturing directional dissipation / Cardillo, Lucio; Corsini, Alessandro; Delibra, Giovanni; Rispoli, Franco; Tezduyar, Tayfun E.. - In: COMPUTERS & FLUIDS. - ISSN 0045-7930. - STAMPA. - 141:(2016), pp. 184-190. [10.1016/j.compfluid.2016.07.011]

Flow analysis of a wave-energy air turbine with the SUPG/PSPG stabilization and discontinuity-capturing directional dissipation

CARDILLO, LUCIO;CORSINI, Alessandro
;
DELIBRA, GIOVANNI;RISPOLI, Franco;
2016

Abstract

We present a flow analysis of a wave-energy air turbine, commonly known as Wells turbine. The focus here is on the computational method used in the analysis, based on the Streamline-Upwind/Petrov-Galerkin (SUPG) and Pressure-Stabilizing/Petrov-Galerkin (PSPG) stabilizations and the Discontinuity-Capturing Directional Dissipation (DCDD). The SUPG/PSPG stabilization is used rather widely and successfully. The DCDD, first introduced to complement the SUPG/PSPG method in computations of incompressible flows in the presence of sharp solution gradients, was also shown to perform well in standard turbulent-flow test computations when compared to the Smagorinsky Large Eddy Simulation (LES) model. The results obtained in our computational analysis of the Wells turbine here compare favorably to the available experimental data, and this demonstrates that the DCDD method performs well also in turbomachinery flows.
2016
turbomachinery; wave-energy turbine; Wells turbine; turbulent flow; SUPG/PSPG method; DCDD
01 Pubblicazione su rivista::01a Articolo in rivista
Flow analysis of a wave-energy air turbine with the SUPG/PSPG stabilization and discontinuity-capturing directional dissipation / Cardillo, Lucio; Corsini, Alessandro; Delibra, Giovanni; Rispoli, Franco; Tezduyar, Tayfun E.. - In: COMPUTERS & FLUIDS. - ISSN 0045-7930. - STAMPA. - 141:(2016), pp. 184-190. [10.1016/j.compfluid.2016.07.011]
File allegati a questo prodotto
File Dimensione Formato  
Cardillo_flow-analysis_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/909323
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact