In the last decades the research on composite materials have been acquiring importance due to the possibility of increasing the material mechanical performances while contemporary decreasing both mass and volume of the structures. Mass lowering is a 'must' especially for military and space applications where aircraft aerodynamic profiles need to be optimized and the high costs of launch and launcher have to decrease. Composites are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control and conformal coatings, adhesives, lubricants, etc. Exposure of composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. This depends mainly on the mission profile of the structure manufactured with the chosen material. The major degradation effects in composites are due to the exposure to atomic oxygen, vacuum ultraviolet, thermal cycling and combined effects during orbit period and plasma during re-entry phase. Among all, carbon-based ceramic composites are the most promising materials for space applications, due to their impressive thermal stability and lightweight. Carbon-Carbon (C/C) composites have already shown their extraordinary features in terms of high stability and excellent mechanical properties, almost unchanged at high temperatures. C/C is used also in engine applications such as nozzle throat section for launchers. The main feature for this application is the high resistance at high temperatures. In these applications high thickness composites are required, but one of the main criticalities is the uniformity of material and its final characteristics. Up to now, there's no standard for the manufacturing of high thickness C/C structure. In this paper a manufacturing method based on the chemical vapor infiltration (CVI) process is proposed and analyzed, following each phase of the process from the preform preparation to the infiltration and analysis of the material.
Optimization of CVI process parameters in high thickness Carbon/Carbon production for aerospace / Albano, Marta; Pastore, Roberto; Delfini, Andrea; Volpini, Fabrizio; Vricella, Antonio; Micheli, Davide; Marchetti, Mario. - ELETTRONICO. - 2:(2015), pp. 954-965. (Intervento presentato al convegno 55th Israel Annual Conference on Aerospace Sciences 2015 tenutosi a Haifa; Israel).
Optimization of CVI process parameters in high thickness Carbon/Carbon production for aerospace
ALBANO, MARTA;PASTORE, Roberto;DELFINI, ANDREA;VOLPINI, Fabrizio;VRICELLA, ANTONIO;MICHELI, DAVIDE;MARCHETTI, Mario
2015
Abstract
In the last decades the research on composite materials have been acquiring importance due to the possibility of increasing the material mechanical performances while contemporary decreasing both mass and volume of the structures. Mass lowering is a 'must' especially for military and space applications where aircraft aerodynamic profiles need to be optimized and the high costs of launch and launcher have to decrease. Composites are widely used in space vehicles and systems as structural materials, thermal blankets, thermal control and conformal coatings, adhesives, lubricants, etc. Exposure of composites to the space environment may result in different detrimental effects via modification of their chemical, electrical, thermal, optical and mechanical properties as well as surface erosion. This depends mainly on the mission profile of the structure manufactured with the chosen material. The major degradation effects in composites are due to the exposure to atomic oxygen, vacuum ultraviolet, thermal cycling and combined effects during orbit period and plasma during re-entry phase. Among all, carbon-based ceramic composites are the most promising materials for space applications, due to their impressive thermal stability and lightweight. Carbon-Carbon (C/C) composites have already shown their extraordinary features in terms of high stability and excellent mechanical properties, almost unchanged at high temperatures. C/C is used also in engine applications such as nozzle throat section for launchers. The main feature for this application is the high resistance at high temperatures. In these applications high thickness composites are required, but one of the main criticalities is the uniformity of material and its final characteristics. Up to now, there's no standard for the manufacturing of high thickness C/C structure. In this paper a manufacturing method based on the chemical vapor infiltration (CVI) process is proposed and analyzed, following each phase of the process from the preform preparation to the infiltration and analysis of the material.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.