In this paper semi-Markov reward models are presented. Higher moments of the reward process is presented for the first time applied to in time non-homogeneous semi-Markov insurance problems. Also an example is presented based on real disability data. Different algorithmic approaches to solve the problem is described.

An algorithmic approach to discrete time non-homogeneous backward semi-Markov reward processes with an application to disability insurance / F., Stemberg; Manca, Raimondo; Dmitrii, Silvestrov. - In: METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY. - ISSN 1387-5841. - 9:4(2007), pp. 497-519. [10.1007/s11009-006-9012-4]

An algorithmic approach to discrete time non-homogeneous backward semi-Markov reward processes with an application to disability insurance

MANCA, Raimondo;
2007

Abstract

In this paper semi-Markov reward models are presented. Higher moments of the reward process is presented for the first time applied to in time non-homogeneous semi-Markov insurance problems. Also an example is presented based on real disability data. Different algorithmic approaches to solve the problem is described.
2007
actuarial; discrete time; higher moments; kurtosis; reward process; semi-markov process; skewness; variance
01 Pubblicazione su rivista::01a Articolo in rivista
An algorithmic approach to discrete time non-homogeneous backward semi-Markov reward processes with an application to disability insurance / F., Stemberg; Manca, Raimondo; Dmitrii, Silvestrov. - In: METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY. - ISSN 1387-5841. - 9:4(2007), pp. 497-519. [10.1007/s11009-006-9012-4]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/90687
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 34
social impact