In this paper, we present a generative model for protein contact networks (PCNs). The soundness of the proposed model is investigated by focusing primarily on mesoscopic properties elaborated from the spectra of the graph Laplacian. To complement the analysis, we also study the classical topological descriptors, such as statistics of the shortest paths and the important feature of modularity. Our experiments show that the proposed model results in a considerable improvement with respect to two suitably chosen generative mechanisms, mimicking with better approximation real PCNs in terms of diffusion properties elaborated from the normalized Laplacian spectra. However, as well as the other network models, it does not reproduce with sufficient accuracy the shortest paths structure. To compensate this drawback, we designed a second step involving a targeted edge reconfiguration process. The ensemble of reconfigured networks denotes further improvements that are statistically significant. As an important byproduct of our study, we demonstrate that modularity, a well-known property of proteins, does not entirely explain the actual network architecture characterizing PCNs. In fact, we conclude that modularity, intended as a quantification of an underlying community structure, should be considered as an emergent property of the structural organization of proteins. Interestingly, such a property is suitably optimized in PCNs together with the feature of path efficiency.

In this paper, we present a generative model for protein contact networks (PCNs). The soundness of the proposed model is investigated by focusing primarily on mesoscopic properties elaborated from the spectra of the graph Laplacian. To complement the analysis, we also study the classical topological descriptors, such as statistics of the shortest paths and the important feature of modularity. Our experiments show that the proposed model results in a considerable improvement with respect to two suitably chosen generative mechanisms, mimicking with better approximation real PCNs in terms of diffusion properties elaborated from the normalized Laplacian spectra. However, as well as the other network models, it does not reproduce with sufficient accuracy the shortest paths structure. To compensate this drawback, we designed a second step involving a targeted edge reconfiguration process. The ensemble of reconfigured networks denotes further improvements that are statistically significant. As an important byproduct of our study, we demonstrate that modularity, a well-known property of proteins, does not entirely explain the actual network architecture characterizing PCNs. In fact, we conclude that modularity, intended as a quantification of an underlying community structure, should be considered as an emergent property of the structural organization of proteins. Interestingly, such a property is suitably optimized in PCNs together with the feature of path efficiency.

A generative model for protein contact networks / Livi, Lorenzo; Maiorino, Enrico; Giuliani, Alessandro; Rizzi, Antonello; Sadeghian, Alireza. - In: JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS. - ISSN 0739-1102. - 34:7(2016), pp. 1441-1454. [10.1080/07391102.2015.1077736]

A generative model for protein contact networks

LIVI, LORENZO;MAIORINO, ENRICO;RIZZI, Antonello;
2016

Abstract

In this paper, we present a generative model for protein contact networks (PCNs). The soundness of the proposed model is investigated by focusing primarily on mesoscopic properties elaborated from the spectra of the graph Laplacian. To complement the analysis, we also study the classical topological descriptors, such as statistics of the shortest paths and the important feature of modularity. Our experiments show that the proposed model results in a considerable improvement with respect to two suitably chosen generative mechanisms, mimicking with better approximation real PCNs in terms of diffusion properties elaborated from the normalized Laplacian spectra. However, as well as the other network models, it does not reproduce with sufficient accuracy the shortest paths structure. To compensate this drawback, we designed a second step involving a targeted edge reconfiguration process. The ensemble of reconfigured networks denotes further improvements that are statistically significant. As an important byproduct of our study, we demonstrate that modularity, a well-known property of proteins, does not entirely explain the actual network architecture characterizing PCNs. In fact, we conclude that modularity, intended as a quantification of an underlying community structure, should be considered as an emergent property of the structural organization of proteins. Interestingly, such a property is suitably optimized in PCNs together with the feature of path efficiency.
2016
In this paper, we present a generative model for protein contact networks (PCNs). The soundness of the proposed model is investigated by focusing primarily on mesoscopic properties elaborated from the spectra of the graph Laplacian. To complement the analysis, we also study the classical topological descriptors, such as statistics of the shortest paths and the important feature of modularity. Our experiments show that the proposed model results in a considerable improvement with respect to two suitably chosen generative mechanisms, mimicking with better approximation real PCNs in terms of diffusion properties elaborated from the normalized Laplacian spectra. However, as well as the other network models, it does not reproduce with sufficient accuracy the shortest paths structure. To compensate this drawback, we designed a second step involving a targeted edge reconfiguration process. The ensemble of reconfigured networks denotes further improvements that are statistically significant. As an important byproduct of our study, we demonstrate that modularity, a well-known property of proteins, does not entirely explain the actual network architecture characterizing PCNs. In fact, we conclude that modularity, intended as a quantification of an underlying community structure, should be considered as an emergent property of the structural organization of proteins. Interestingly, such a property is suitably optimized in PCNs together with the feature of path efficiency.
generative model; graph Laplacian; mesoscopic analysis; protein contact network; molecular biology; structural biology
01 Pubblicazione su rivista::01a Articolo in rivista
A generative model for protein contact networks / Livi, Lorenzo; Maiorino, Enrico; Giuliani, Alessandro; Rizzi, Antonello; Sadeghian, Alireza. - In: JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS. - ISSN 0739-1102. - 34:7(2016), pp. 1441-1454. [10.1080/07391102.2015.1077736]
File allegati a questo prodotto
File Dimensione Formato  
Livi_Generative-model_2016.pdf

solo utenti autorizzati

Note: A generative model for protein contact networks
Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/904962
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact