Dispersive shock waves dominate wave-breaking phenomena in Hamiltonian systems. In the absence of loss, these highly irregular and disordered waves are potentially reversible. However, no experimental evidence has been given about the possibility of inverting the dynamics of a dispersive shock wave and turn it into a regular wave-front. Nevertheless, the opposite scenario, i.e., a smooth wave generating turbulent dynamics is well studied and observed in experiments. Here we introduce a new theoretical formulation for the dynamics in a highly nonlocal and defocusing medium described by the nonlinear Schroedinger equation. Our theory unveils a mechanism that enhances the degree of irreversibility. This mechanism explains why a dispersive shock cannot be reversed in evolution even for an arbitrarirly small amount of loss. Our theory is based on the concept of nonlinear Gamow vectors, i.e., power dependent generalizations of the counter-intuitive and hereto elusive exponentially decaying states in Hamiltonian systems. We theoretically show that nonlinear Gamow vectors play a fundamental role in nonlinear Schroedinger models: they may be used as a generalized basis for describing the dynamics of the shock waves, and affect the degree of irreversibility of wave-breaking phenomena. Gamow vectors allow to analytically calculate the amount of breaking of time-reversal with a quantitative agreement with numerical solutions. We also show that a nonlocal nonlinear optical medium may act as a simulator for the experimental investigation of quantum irreversible models, as the reversed harmonic oscillator.
Nonlinear Gamow vectors, shock waves, and irreversibility in optically nonlocal media / Gentilini, Silvia; Braidotti, Maria Chiara; Marcucci, Giulia; DEL RE, Eugenio; Conti, Claudio. - In: PHYSICAL REVIEW A. - ISSN 1050-2947. - STAMPA. - 92:(2015), p. 023801. [10.1103/PhysRevA.92.023801]
Nonlinear Gamow vectors, shock waves, and irreversibility in optically nonlocal media
MARCUCCI, GIULIA;DEL RE, EUGENIO;CONTI, CLAUDIO
2015
Abstract
Dispersive shock waves dominate wave-breaking phenomena in Hamiltonian systems. In the absence of loss, these highly irregular and disordered waves are potentially reversible. However, no experimental evidence has been given about the possibility of inverting the dynamics of a dispersive shock wave and turn it into a regular wave-front. Nevertheless, the opposite scenario, i.e., a smooth wave generating turbulent dynamics is well studied and observed in experiments. Here we introduce a new theoretical formulation for the dynamics in a highly nonlocal and defocusing medium described by the nonlinear Schroedinger equation. Our theory unveils a mechanism that enhances the degree of irreversibility. This mechanism explains why a dispersive shock cannot be reversed in evolution even for an arbitrarirly small amount of loss. Our theory is based on the concept of nonlinear Gamow vectors, i.e., power dependent generalizations of the counter-intuitive and hereto elusive exponentially decaying states in Hamiltonian systems. We theoretically show that nonlinear Gamow vectors play a fundamental role in nonlinear Schroedinger models: they may be used as a generalized basis for describing the dynamics of the shock waves, and affect the degree of irreversibility of wave-breaking phenomena. Gamow vectors allow to analytically calculate the amount of breaking of time-reversal with a quantitative agreement with numerical solutions. We also show that a nonlocal nonlinear optical medium may act as a simulator for the experimental investigation of quantum irreversible models, as the reversed harmonic oscillator.File | Dimensione | Formato | |
---|---|---|---|
Gentilini_Nonlinear_2015.pdf
solo gestori archivio
Note: Pdf dell'articolo
Tipologia:
Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
795.59 kB
Formato
Adobe PDF
|
795.59 kB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.