Mutations in either white collar-1 (wc-1) or white collar-2 (wc-2) lead to a loss of most blue-light-induced phenomena in Neurospora crassa. Sequence analysis and in vitro experiments show that WC-1 and WC-2 are transcription factors regulating the expression of light-induced genes. The WC proteins form homo- and heterodimers in vitro; this interaction could represent a fundamental step in the control of their activity. We demonstrate in vivo that the WC proteins are assembled in a white collar complex (WCC) and that WC-1 undergoes a change in mobility due to light-induced phosphorylation events. The phosphorylation level increases progressively upon light exposure, producing a hyperphosphorylated form that is degraded and apparently replaced in the complex by a newly synthesized WC-1, WC-2 is unmodified and also does not change quantitatively in the time frame examined. Light-dependent phosphorylation of WC-1 also occurs in a wc-2 mutant, suggesting that a functional WC-2 is dispensable for this light-specific event. These results suggest that light-induced phosphorylation and degradation of WC-1 could play a role in the transient expression of blue-light-regulated genes. Our findings suggest a mechanism by which WC-1 and WC-2 mediate light responses in Neurospora.
Role of a white collar-1-white collar-2 complex in blue-light signal transduction / Talora, Claudio; L., Franchi; H., Linden; Ballario, Paola; Macino, Giuseppe. - In: EMBO JOURNAL. - ISSN 0261-4189. - STAMPA. - 18:18(1999), pp. 4961-4968. [10.1093/emboj/18.18.4961]
Role of a white collar-1-white collar-2 complex in blue-light signal transduction
TALORA, Claudio;BALLARIO, Paola;MACINO, Giuseppe
1999
Abstract
Mutations in either white collar-1 (wc-1) or white collar-2 (wc-2) lead to a loss of most blue-light-induced phenomena in Neurospora crassa. Sequence analysis and in vitro experiments show that WC-1 and WC-2 are transcription factors regulating the expression of light-induced genes. The WC proteins form homo- and heterodimers in vitro; this interaction could represent a fundamental step in the control of their activity. We demonstrate in vivo that the WC proteins are assembled in a white collar complex (WCC) and that WC-1 undergoes a change in mobility due to light-induced phosphorylation events. The phosphorylation level increases progressively upon light exposure, producing a hyperphosphorylated form that is degraded and apparently replaced in the complex by a newly synthesized WC-1, WC-2 is unmodified and also does not change quantitatively in the time frame examined. Light-dependent phosphorylation of WC-1 also occurs in a wc-2 mutant, suggesting that a functional WC-2 is dispensable for this light-specific event. These results suggest that light-induced phosphorylation and degradation of WC-1 could play a role in the transient expression of blue-light-regulated genes. Our findings suggest a mechanism by which WC-1 and WC-2 mediate light responses in Neurospora.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.