Mutations in either white collar-1 (wc-1) or white collar-2 (wc-2) lead to a loss of most blue-light-induced phenomena in Neurospora crassa. Sequence analysis and in vitro experiments show that WC-1 and WC-2 are transcription factors regulating the expression of light-induced genes. The WC proteins form homo- and heterodimers in vitro; this interaction could represent a fundamental step in the control of their activity. We demonstrate in vivo that the WC proteins are assembled in a white collar complex (WCC) and that WC-1 undergoes a change in mobility due to light-induced phosphorylation events. The phosphorylation level increases progressively upon light exposure, producing a hyperphosphorylated form that is degraded and apparently replaced in the complex by a newly synthesized WC-1, WC-2 is unmodified and also does not change quantitatively in the time frame examined. Light-dependent phosphorylation of WC-1 also occurs in a wc-2 mutant, suggesting that a functional WC-2 is dispensable for this light-specific event. These results suggest that light-induced phosphorylation and degradation of WC-1 could play a role in the transient expression of blue-light-regulated genes. Our findings suggest a mechanism by which WC-1 and WC-2 mediate light responses in Neurospora.

Role of a white collar-1-white collar-2 complex in blue-light signal transduction / Talora, Claudio; L., Franchi; H., Linden; Ballario, Paola; Macino, Giuseppe. - In: EMBO JOURNAL. - ISSN 0261-4189. - STAMPA. - 18:18(1999), pp. 4961-4968. [10.1093/emboj/18.18.4961]

Role of a white collar-1-white collar-2 complex in blue-light signal transduction

TALORA, Claudio;BALLARIO, Paola;MACINO, Giuseppe
1999

Abstract

Mutations in either white collar-1 (wc-1) or white collar-2 (wc-2) lead to a loss of most blue-light-induced phenomena in Neurospora crassa. Sequence analysis and in vitro experiments show that WC-1 and WC-2 are transcription factors regulating the expression of light-induced genes. The WC proteins form homo- and heterodimers in vitro; this interaction could represent a fundamental step in the control of their activity. We demonstrate in vivo that the WC proteins are assembled in a white collar complex (WCC) and that WC-1 undergoes a change in mobility due to light-induced phosphorylation events. The phosphorylation level increases progressively upon light exposure, producing a hyperphosphorylated form that is degraded and apparently replaced in the complex by a newly synthesized WC-1, WC-2 is unmodified and also does not change quantitatively in the time frame examined. Light-dependent phosphorylation of WC-1 also occurs in a wc-2 mutant, suggesting that a functional WC-2 is dispensable for this light-specific event. These results suggest that light-induced phosphorylation and degradation of WC-1 could play a role in the transient expression of blue-light-regulated genes. Our findings suggest a mechanism by which WC-1 and WC-2 mediate light responses in Neurospora.
1999
blue light; dimerization; phosphorylation; signal transduction
01 Pubblicazione su rivista::01a Articolo in rivista
Role of a white collar-1-white collar-2 complex in blue-light signal transduction / Talora, Claudio; L., Franchi; H., Linden; Ballario, Paola; Macino, Giuseppe. - In: EMBO JOURNAL. - ISSN 0261-4189. - STAMPA. - 18:18(1999), pp. 4961-4968. [10.1093/emboj/18.18.4961]
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/90292
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 79
  • Scopus 203
  • ???jsp.display-item.citation.isi??? 200
social impact