To better understand the mechanisms leading to different radon background levels in volcanic settings, we have performed two long-term deformation experiments of 16 days using a real-time setup that enables us to monitor any variation of radon activity concentration during rock compression. Our measurements demonstrate that, in the case of highly porous volcanic rocks, the emanating power of the substrate changes as a function of the volcanic stress conditions. Constant magmatic pressures, such as those observed during dike intrusions and hydrothermal fluid injections, can result in pervasive pore collapse that is mirrored by a significant radon decrease until a constant emanation is achieved. Conversely, repeated cycles of stress due to, for example, volcano inflation/deflation cycles, cause a progressive radon increase a few days (but even weeks and months) before rupture. After rock failure, however, the formation of new emanation surfaces leads to a substantial increase of the radon signal. Our results suggest that surface deformation in tectonic and volcanic settings, such as inflation/deflation or constant magmatic pressures, have important repercussions on the emanating power of volcanic substrates. © 2013 Springer-Verlag Berlin Heidelberg.

Contrasting radon background levels in volcanic settings: Clues from 220Rn activity concentrations measured during long-term deformation experiments / Scarlato, P.; Tuccimei, P.; Mollo, Silvio; Soligo, M.; Castelluccio, M.. - ELETTRONICO. - 75:9(2013), pp. 1-8. (Intervento presentato al convegno AGU, American Geophysical Union tenutosi a San Francisco, United States of America nel 9-13 December) [10.1007/s00445-013-0751-0].

Contrasting radon background levels in volcanic settings: Clues from 220Rn activity concentrations measured during long-term deformation experiments

MOLLO, SILVIO;
2013

Abstract

To better understand the mechanisms leading to different radon background levels in volcanic settings, we have performed two long-term deformation experiments of 16 days using a real-time setup that enables us to monitor any variation of radon activity concentration during rock compression. Our measurements demonstrate that, in the case of highly porous volcanic rocks, the emanating power of the substrate changes as a function of the volcanic stress conditions. Constant magmatic pressures, such as those observed during dike intrusions and hydrothermal fluid injections, can result in pervasive pore collapse that is mirrored by a significant radon decrease until a constant emanation is achieved. Conversely, repeated cycles of stress due to, for example, volcano inflation/deflation cycles, cause a progressive radon increase a few days (but even weeks and months) before rupture. After rock failure, however, the formation of new emanation surfaces leads to a substantial increase of the radon signal. Our results suggest that surface deformation in tectonic and volcanic settings, such as inflation/deflation or constant magmatic pressures, have important repercussions on the emanating power of volcanic substrates. © 2013 Springer-Verlag Berlin Heidelberg.
File allegati a questo prodotto
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/899130
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? ND
social impact