A general geometrically non-linear model for lateral-torsional buckling of thick and thin-walled FGM box beams is presented. In this model primary and secondary torsional warping and shear effects are taken into account. The coupled equilibrium equations obtained from Galerkin's method are derived and the corresponding tangent matrix is used to compute the critical moments. General expression is derived for the lateral-torsional buckling load of unshearable FGM beams. The results are validated by comparison with a 3D finite element simulation using the code ABAQUS. The influences of the geometrical characteristics and the shear effects on the buckling loads are demonstrated through several case studies.
Investigation of the instability of FGM box beams / Ziane, Noureddine; Meftah, Sid Ahmed; Ruta, Giuseppe; Tounsi, Abdelouahed; Bedia, El Abbas Adda. - In: STRUCTURAL ENGINEERING AND MECHANICS. - ISSN 1225-4568. - STAMPA. - 54:3(2015), pp. 579-595. [10.12989/sem.2015.54.3.579]
Investigation of the instability of FGM box beams
RUTA, Giuseppe;
2015
Abstract
A general geometrically non-linear model for lateral-torsional buckling of thick and thin-walled FGM box beams is presented. In this model primary and secondary torsional warping and shear effects are taken into account. The coupled equilibrium equations obtained from Galerkin's method are derived and the corresponding tangent matrix is used to compute the critical moments. General expression is derived for the lateral-torsional buckling load of unshearable FGM beams. The results are validated by comparison with a 3D finite element simulation using the code ABAQUS. The influences of the geometrical characteristics and the shear effects on the buckling loads are demonstrated through several case studies.File | Dimensione | Formato | |
---|---|---|---|
Ziane_Investigation_2015.pdf
solo utenti autorizzati
Note: Articolo principale
Tipologia:
Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1.22 MB
Formato
Adobe PDF
|
1.22 MB | Adobe PDF | Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.