We propose an integral form of the fully non-linear Boussinesq equations in contravariant formulation, in which Christoffel symbols are avoided, in order to simulate wave transformation phenomena, wave breaking and near shore currents in computational domains representing the complex morphology of real coastal regions. The motion equations retain the term related to the approximation to the second order of the vertical vorticity. A new Upwind Weighted Essentially Non-Oscillatory scheme for the solution of the fully non- linear Boussinesq equations on generalised curvilinear coordinate systems is proposed. The equations are rearranged in order to solve them by a high resolution hybrid finite volume–finite difference scheme. The conservative part of the above-mentioned equations, consisting of the convective terms and the terms related to the free surface elevation, is discretised by a high-order shock- capturing finite volume scheme; dispersive terms and the term related to the approximation to the second order of the vertical vorticity are discretised by a cell-centred finite difference scheme. The shock-capturing method makes it possible to intrinsically model the wave breaking, therefore no additional terms are needed to take into account the breaking related energy dissipation in the surf zone. The model is applied on a real case regarding the simulation of wave fields and nearshore currents in the coastal region opposite Pescara harbour (Italy).

Contravariant Boussinesq equations for the simulation of wave transformation, breaking and run-up / Gallerano, Francesco; Cannata, Giovanni; DE GAUDENZI, Oriana; Scarpone, Simone. - STAMPA. - 1:(2015), pp. 319-330. (Intervento presentato al convegno Coastal Cities 2015 tenutosi a New Forest, UK nel 7 - 9 July 2015) [10.2495/CC150271].

Contravariant Boussinesq equations for the simulation of wave transformation, breaking and run-up

GALLERANO, Francesco;CANNATA, Giovanni;DE GAUDENZI, ORIANA;SCARPONE, SIMONE
2015

Abstract

We propose an integral form of the fully non-linear Boussinesq equations in contravariant formulation, in which Christoffel symbols are avoided, in order to simulate wave transformation phenomena, wave breaking and near shore currents in computational domains representing the complex morphology of real coastal regions. The motion equations retain the term related to the approximation to the second order of the vertical vorticity. A new Upwind Weighted Essentially Non-Oscillatory scheme for the solution of the fully non- linear Boussinesq equations on generalised curvilinear coordinate systems is proposed. The equations are rearranged in order to solve them by a high resolution hybrid finite volume–finite difference scheme. The conservative part of the above-mentioned equations, consisting of the convective terms and the terms related to the free surface elevation, is discretised by a high-order shock- capturing finite volume scheme; dispersive terms and the term related to the approximation to the second order of the vertical vorticity are discretised by a cell-centred finite difference scheme. The shock-capturing method makes it possible to intrinsically model the wave breaking, therefore no additional terms are needed to take into account the breaking related energy dissipation in the surf zone. The model is applied on a real case regarding the simulation of wave fields and nearshore currents in the coastal region opposite Pescara harbour (Italy).
2015
Coastal Cities 2015
contravariant formulation; Boussinesq equations; breaking waves; run-up; shock-capturing methods
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Contravariant Boussinesq equations for the simulation of wave transformation, breaking and run-up / Gallerano, Francesco; Cannata, Giovanni; DE GAUDENZI, Oriana; Scarpone, Simone. - STAMPA. - 1:(2015), pp. 319-330. (Intervento presentato al convegno Coastal Cities 2015 tenutosi a New Forest, UK nel 7 - 9 July 2015) [10.2495/CC150271].
File allegati a questo prodotto
File Dimensione Formato  
Gallerano_Contravariant_Boussinesq.pdf

accesso aperto

Note: https://www.witpress.com/elibrary/wit-transactions-on-the-built-environment/148/34454
Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/895607
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact