In this work, several theoretical aspects involved in the first-generation inhibition-based electrochemical biosensor measurements have been discussed. In particular, we have developed a theoretical-methodological approach for the characterization of the kinetic interaction between alkaline phosphatase (AlP) and 2,4- dichlorophenoxy acetic acid (2,4-D) as representative inhibitor studied by means of cyclic voltammetry and amperometry. Based on these findings, a biosensor for the fast, simple, and inexpensive determination of 2,4-D has been developed. The enzyme has been immobilized on screen-printed electrodes (SPEs). To optimize the biosensor performances, several carbon-based SPEs, namely graphite (G), graphene (GP), and multiwalled carbon nanotubes (MWCNTs), have been evaluated. AlP was immobilized on the electrode surface by means of polyvinyl alcohol with styryl-pyridinium groups (PVA-SbQ) as cross-linking agent. In the presence of ascorbate 2-phosphate (A2P) as substrate, the herbicide has been determined, thanks to its inhibition activity towards the enzyme catalyzing the oxidation of A2P to ascorbic acid (AA). Under optimum experimental conditions, the best performance in terms of catalytic efficiency has been demonstrated by MWCNTs SPE-based biosensor. The inhibition biosensor shows a linearity range towards 2,4-D within 2.1–110 ppb, a LOD of 1 ppb, and acceptable repeatability and stability. This analysis method was applied to fortified lake water samples with recoveries above 90 %. The low cost of this device and its good analytical performances suggest its application for the screening and monitoring of 2,4-D in real matrices.

Inhibition-based first-generation electrochemical biosensors: theoretical aspects and application to 2,4-dichlorophenoxy acetic acid detection / Bollella, Paolo; Fusco, Giovanni; Tortolini, Cristina; Sanzo', Gabriella; Antiochia, Riccarda; Favero, Gabriele; Mazzei, Franco. - In: ANALYTICAL AND BIOANALYTICAL CHEMISTRY. - ISSN 1618-2642. - STAMPA. - 408:12(2016), pp. 3203-3211. [10.1007/s00216-016-9389-z]

Inhibition-based first-generation electrochemical biosensors: theoretical aspects and application to 2,4-dichlorophenoxy acetic acid detection

BOLLELLA, PAOLO;FUSCO, GIOVANNI;TORTOLINI, CRISTINA;SANZO', GABRIELLA;ANTIOCHIA, RICCARDA;FAVERO, Gabriele;MAZZEI, Franco
2016

Abstract

In this work, several theoretical aspects involved in the first-generation inhibition-based electrochemical biosensor measurements have been discussed. In particular, we have developed a theoretical-methodological approach for the characterization of the kinetic interaction between alkaline phosphatase (AlP) and 2,4- dichlorophenoxy acetic acid (2,4-D) as representative inhibitor studied by means of cyclic voltammetry and amperometry. Based on these findings, a biosensor for the fast, simple, and inexpensive determination of 2,4-D has been developed. The enzyme has been immobilized on screen-printed electrodes (SPEs). To optimize the biosensor performances, several carbon-based SPEs, namely graphite (G), graphene (GP), and multiwalled carbon nanotubes (MWCNTs), have been evaluated. AlP was immobilized on the electrode surface by means of polyvinyl alcohol with styryl-pyridinium groups (PVA-SbQ) as cross-linking agent. In the presence of ascorbate 2-phosphate (A2P) as substrate, the herbicide has been determined, thanks to its inhibition activity towards the enzyme catalyzing the oxidation of A2P to ascorbic acid (AA). Under optimum experimental conditions, the best performance in terms of catalytic efficiency has been demonstrated by MWCNTs SPE-based biosensor. The inhibition biosensor shows a linearity range towards 2,4-D within 2.1–110 ppb, a LOD of 1 ppb, and acceptable repeatability and stability. This analysis method was applied to fortified lake water samples with recoveries above 90 %. The low cost of this device and its good analytical performances suggest its application for the screening and monitoring of 2,4-D in real matrices.
2016
2,4-D; inhibition biosensor; phosphatase alkaline; screen printed electrode; analytical chemistry; biochemistry
01 Pubblicazione su rivista::01a Articolo in rivista
Inhibition-based first-generation electrochemical biosensors: theoretical aspects and application to 2,4-dichlorophenoxy acetic acid detection / Bollella, Paolo; Fusco, Giovanni; Tortolini, Cristina; Sanzo', Gabriella; Antiochia, Riccarda; Favero, Gabriele; Mazzei, Franco. - In: ANALYTICAL AND BIOANALYTICAL CHEMISTRY. - ISSN 1618-2642. - STAMPA. - 408:12(2016), pp. 3203-3211. [10.1007/s00216-016-9389-z]
File allegati a questo prodotto
File Dimensione Formato  
Bollella_Inhibition-based_2016.pdf

accesso aperto

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 607.36 kB
Formato Adobe PDF
607.36 kB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/895155
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 22
social impact