The GEM detectors will be installed at the Compact Muon Solenoid (CMS) experiment during Long Shutdown II of the LHC in 2018. The GEM foil is a basic part of the detector which consists of a composite material, i.e. polyimide coated with copper and perforated with a high density of micro holes. In this paper the results of the GEM foil material characterization are reported, and a campaign of tensile and holes deformation tests is performed. During the tests, the complex radiation environment at CMS is taken into account and samples are prepared accordingly to see the impacts of the radiation on the GEM foil, i.e. non-irradiated samples are used as the reference and compared with neutrons- and gamma- irradiated. These studies provide the information necessary to optimize the stress level without damaging the foil and holes during the detector assembly in which the GEM foils stack is stretched simultaneously to maintain the uniform gap among the foils in order to get the designed performance of the detector. Finally, an estimate of the Young's modulus of the GEM foil is provided by using the tensile test data. © CERN 2016.

Gas Electron Multiplier foil holes: A study of mechanical and deformation effects / Benussi, L.; Bianco, S.; Saviano, Giovanna; Muhammad, Saleh; Piccolo, D.; Suhaj, A.; Sharma, A.; Caponero, M.; Passamonti, L.; Pierluigi, D.; Russo, A.; Lalli, Andrea; Valente, Marco; Ferrini, Mauro; Langeslag, S. A. E.; Sgobba, S.; Aviles, I.; Magnani, A.; Vai, I.. - In: JOURNAL OF INSTRUMENTATION. - ISSN 1748-0221. - 11:8(2016), pp. P08002-P08002. [10.1088/1748-0221/11/08/P08002]

Gas Electron Multiplier foil holes: A study of mechanical and deformation effects

SAVIANO, Giovanna;MUHAMMAD, SALEH;LALLI, ANDREA;VALENTE, Marco;FERRINI, Mauro;
2016

Abstract

The GEM detectors will be installed at the Compact Muon Solenoid (CMS) experiment during Long Shutdown II of the LHC in 2018. The GEM foil is a basic part of the detector which consists of a composite material, i.e. polyimide coated with copper and perforated with a high density of micro holes. In this paper the results of the GEM foil material characterization are reported, and a campaign of tensile and holes deformation tests is performed. During the tests, the complex radiation environment at CMS is taken into account and samples are prepared accordingly to see the impacts of the radiation on the GEM foil, i.e. non-irradiated samples are used as the reference and compared with neutrons- and gamma- irradiated. These studies provide the information necessary to optimize the stress level without damaging the foil and holes during the detector assembly in which the GEM foils stack is stretched simultaneously to maintain the uniform gap among the foils in order to get the designed performance of the detector. Finally, an estimate of the Young's modulus of the GEM foil is provided by using the tensile test data. © CERN 2016.
2016
Electron multipliers (gas); Gaseous detectors; Materials for gaseous detectors; Radiation damage to detector materials (gas detectors); Instrumentation; Mathematical Physics
01 Pubblicazione su rivista::01a Articolo in rivista
Gas Electron Multiplier foil holes: A study of mechanical and deformation effects / Benussi, L.; Bianco, S.; Saviano, Giovanna; Muhammad, Saleh; Piccolo, D.; Suhaj, A.; Sharma, A.; Caponero, M.; Passamonti, L.; Pierluigi, D.; Russo, A.; Lalli, Andrea; Valente, Marco; Ferrini, Mauro; Langeslag, S. A. E.; Sgobba, S.; Aviles, I.; Magnani, A.; Vai, I.. - In: JOURNAL OF INSTRUMENTATION. - ISSN 1748-0221. - 11:8(2016), pp. P08002-P08002. [10.1088/1748-0221/11/08/P08002]
File allegati a questo prodotto
File Dimensione Formato  
Gas Electron Multiplier foil holes a study of mechanical and deformation effects.pdf

solo gestori archivio

Tipologia: Documento in Post-print (versione successiva alla peer review e accettata per la pubblicazione)
Licenza: Altra licenza (allegare)
Dimensione 1.94 MB
Formato Adobe PDF
1.94 MB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/887616
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact