Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data. The Fuzzy c-Medoids Clustering (FcMdC) method is one of the most popular clustering methods based on a partitioning around medoids approach. However, one of the greatest disadvantages of this method is its sensitivity to the presence of outliers in data. This paper introduces a new robust fuzzy clustering method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID). The Huber's M-estimators and the Yager's Ordered Weighted Averaging (OWA) operators are used in the method proposed to make it robust to outliers. The described algorithm is compared with the fuzzy c-medoids method in the experiments performed on synthetic data with different types of outliers. A real application of the FcOMdC-ID is also provided.

Fuzzy C-ordered medoids clustering of interval-valued data / D'Urso, Pierpaolo; Jacek, Leski. - In: PATTERN RECOGNITION. - ISSN 0031-3203. - STAMPA. - 58:(2016), pp. 49-67. [doi:10.1016/j.patcog.2016.04.005]

Fuzzy C-ordered medoids clustering of interval-valued data

D'URSO, Pierpaolo;
2016

Abstract

Fuzzy clustering for interval-valued data helps us to find natural vague boundaries in such data. The Fuzzy c-Medoids Clustering (FcMdC) method is one of the most popular clustering methods based on a partitioning around medoids approach. However, one of the greatest disadvantages of this method is its sensitivity to the presence of outliers in data. This paper introduces a new robust fuzzy clustering method named Fuzzy c-Ordered-Medoids clustering for interval-valued data (FcOMdC-ID). The Huber's M-estimators and the Yager's Ordered Weighted Averaging (OWA) operators are used in the method proposed to make it robust to outliers. The described algorithm is compared with the fuzzy c-medoids method in the experiments performed on synthetic data with different types of outliers. A real application of the FcOMdC-ID is also provided.
2016
scienze statistiche
01 Pubblicazione su rivista::01a Articolo in rivista
Fuzzy C-ordered medoids clustering of interval-valued data / D'Urso, Pierpaolo; Jacek, Leski. - In: PATTERN RECOGNITION. - ISSN 0031-3203. - STAMPA. - 58:(2016), pp. 49-67. [doi:10.1016/j.patcog.2016.04.005]
File allegati a questo prodotto
File Dimensione Formato  
PATTERN RECOGNITION.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/886554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 53
  • ???jsp.display-item.citation.isi??? 46
social impact