Quantile regression has been becoming a relevant and powerful technique to study the whole conditional distribution of a response variable without relying on strong assumptions about the underlying data generating process. Furthermore, quantile regression has been effectively used in many real applications, providing a representation of the relation between the response variable and the covariates, that overcomes traditional mean regression. In this paper, we consider a quantile regression model in which the regression coefficients are assumed to evolve over time, following a stationary stochastic process. Furthermore, since homoskedastic quantile regression models result in location shifts of the regression hyperplane, we extend the time–varying parameter model to allow for heteroskedastic innovations. A dynamic version of the adaptive–Lasso penalty is then introduced to force the dynamic evolution of non relevant parameters to shrink towards zero. A simulation study is carried out to illustrate the model performances

Dynamic Quantile Lasso Regression / Bernardi, M.; Poggioni, Fabrizio; Petrella, Lea. - STAMPA. - (2016). (Intervento presentato al convegno Innovazione & Società, Metodi Statistici per la valutazione. 48th Meeting of the Italian Statistical Society tenutosi a Fisciano (SA) Università degli Studi di Salerno - Campus universitario di Fisciano).

Dynamic Quantile Lasso Regression

POGGIONI, FABRIZIO;PETRELLA, Lea
2016

Abstract

Quantile regression has been becoming a relevant and powerful technique to study the whole conditional distribution of a response variable without relying on strong assumptions about the underlying data generating process. Furthermore, quantile regression has been effectively used in many real applications, providing a representation of the relation between the response variable and the covariates, that overcomes traditional mean regression. In this paper, we consider a quantile regression model in which the regression coefficients are assumed to evolve over time, following a stationary stochastic process. Furthermore, since homoskedastic quantile regression models result in location shifts of the regression hyperplane, we extend the time–varying parameter model to allow for heteroskedastic innovations. A dynamic version of the adaptive–Lasso penalty is then introduced to force the dynamic evolution of non relevant parameters to shrink towards zero. A simulation study is carried out to illustrate the model performances
2016
Innovazione & Società, Metodi Statistici per la valutazione. 48th Meeting of the Italian Statistical Society
quantile regression; dynamic lasso
04 Pubblicazione in atti di convegno::04b Atto di convegno in volume
Dynamic Quantile Lasso Regression / Bernardi, M.; Poggioni, Fabrizio; Petrella, Lea. - STAMPA. - (2016). (Intervento presentato al convegno Innovazione & Società, Metodi Statistici per la valutazione. 48th Meeting of the Italian Statistical Society tenutosi a Fisciano (SA) Università degli Studi di Salerno - Campus universitario di Fisciano).
File allegati a questo prodotto
File Dimensione Formato  
Petrella_Dynamic-Quantile-SIS_2016.pdf

solo gestori archivio

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 279.48 kB
Formato Adobe PDF
279.48 kB Adobe PDF   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/882664
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact