Peroxisomal proliferators induce in rodents hepatic hyperplasia and hypertrophy; the significant increase in the peroxisomal population is accompanied by specific and reversible induction of some peroxisomal enzymes. In suckling rats born from clofibrate-treated mothers, a massive removal of proliferated organelles occurs within 3 days of recovery. In the present paper we examined the early stages of the recovery period in liver of male rats treated with clofibrate for 5 days. The lysosomal involvement in the removal of drug-induced peroxisomes was investigated under physiological conditions, ie in the absence of inhibitors of the autophagic process. Biochemical results indicate that peroxisomal beta-oxidation, but not catalase activity, returns to the control values within the examined period. Total acid phosphatase activity is not affected by clofibrate treatment, but following fractionation on a linear density gradient the lysosomal marker enzyme activity is shifted towards lower density values, particularly at day 1 and 2 of recovery. This class of organelles possibly represents lysosomes involved in active autophagic processes. Acid phosphatase cytochemistry shows an increase of lysosome number at day 1 of recovery. Combination of acid phosphatase cytochemistry either with catalase cytochemistry or with catalase immunogold labelling allows to reveal organelles containing both marker enzymes. These results strongly support the involvement of autophagic processes in the removal of proliferated peroxisomes. ((C) Elsevier, Paris).
Lysosomal involvement in the removal of clofibrate-induced rat liver peroxisomes. A biochemical and morphological analysis / B., Serafini; S., Stefanini; M. P., Ceru; Sartori, Claudia. - In: BIOLOGY OF THE CELL. - ISSN 0248-4900. - STAMPA. - 90:3(1998), pp. 229-237. [10.1016/s0248-4900(98)80019-1]
Lysosomal involvement in the removal of clofibrate-induced rat liver peroxisomes. A biochemical and morphological analysis
SARTORI, Claudia
1998
Abstract
Peroxisomal proliferators induce in rodents hepatic hyperplasia and hypertrophy; the significant increase in the peroxisomal population is accompanied by specific and reversible induction of some peroxisomal enzymes. In suckling rats born from clofibrate-treated mothers, a massive removal of proliferated organelles occurs within 3 days of recovery. In the present paper we examined the early stages of the recovery period in liver of male rats treated with clofibrate for 5 days. The lysosomal involvement in the removal of drug-induced peroxisomes was investigated under physiological conditions, ie in the absence of inhibitors of the autophagic process. Biochemical results indicate that peroxisomal beta-oxidation, but not catalase activity, returns to the control values within the examined period. Total acid phosphatase activity is not affected by clofibrate treatment, but following fractionation on a linear density gradient the lysosomal marker enzyme activity is shifted towards lower density values, particularly at day 1 and 2 of recovery. This class of organelles possibly represents lysosomes involved in active autophagic processes. Acid phosphatase cytochemistry shows an increase of lysosome number at day 1 of recovery. Combination of acid phosphatase cytochemistry either with catalase cytochemistry or with catalase immunogold labelling allows to reveal organelles containing both marker enzymes. These results strongly support the involvement of autophagic processes in the removal of proliferated peroxisomes. ((C) Elsevier, Paris).I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.